
�������������������

���
���������������������������
���������������������

Richard Berntsson Svensson, Daniel Berry, Maya Daneva, Jörg
Dörr, Samuel A. Fricker, Andrea Herrmann, Georg Herzwurm,
Marjo Kauppinen, Nazim H. Madhavji, Martin Mahaux, Barbara
Paech, Birgit Penzenstadler, Wolfram Pietsch, Camille Salinesi,
Kurt Schneider, Norbert Seyff, Inge van de Weerd (Eds.)

Proceedings of the Workshops RE4SuSy,
REEW, CreaRE, RePriCo, IWSPM and
the Conference Related Empirical Study,
Empirical Fair and Doctoral Symposium

ICB-Research Report No. 52

July 2012

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de
ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

5218th International Working Conference on
Requirements Engineering: Foundation for
Software Quality

�

Die Forschungsberi ch te des Inst ituts
für In format ik und Wir tschafts in for -‐‑
mat ik dienen der Darste l lung vor läu-‐‑
f iger Ergebnisse , d ie i . d . R . noch für
spätere Veröffen tl ichungen überarbei-‐‑
tet werden . Die Autoren s ind deshalb
für kr it ische Hinweise dankbar .

All r ights rese rved . No part of th is
report may be reproduced by any
means , or translated .

Contact :

Inst itu t für Informatik und
Wir tschafts in format ik (ICB)
Univers ität Duisburg-‐‑Essen
Univers itätss tr. 9
45141 Essen

Tel . : 0201-‐‑183-‐‑4041
Fax : 0201-‐‑183-‐‑4011
Email : i cb@uni-‐‑duisburg -‐‑essen.de

Proceedings Edited by:

Richard Berntsson Svensson
Daniel Berry
Maya Daneva
Jörg Dörr
Samuel A . Fr icker
Andrea Herrmann
Georg Herzwurm
Marjo Kauppinen
Nazim H. Madhavj i
Mart in Mahaux
Barbara Paech
B irgit Penzenstadle r
Wolfram P ietsch
Camill e Sal ines i
Kurt Schneider
Norbert Seyff
Inge van de Weerd

The ICB Research Reports comprise
preliminary resul ts which wi l l usually
be revised for subsequent pub lica-‐‑
t ions . Cr it ica l comments would be
apprec iated by the au thors .

A lle Rechte vorbehalten. Insbesondere
d ie der Übersetzung, des Nachdru-‐‑
ckes , des Vortrags , der Entnahme von
Abbildungen und Tabe llen – auch bei
nur auszugswe iser Verwertung.

ISSN 1860-‐‑2770 (Pr int)
ISSN 1866-‐‑5101 (Online)

ICB Research Reports

Edited by:

Prof . Dr . Heimo Adelsberger
Prof . Dr . Peter Chamoni
Prof . Dr . F rank Dor loff
Prof . Dr . K laus Echt le
Prof . Dr . Stefan E icker
Prof . Dr . Ulr ich Frank
Prof . Dr . Michael Goedicke
Prof . Dr . Volker Gruhn
PD Dr. Chri st ina K lüver
Prof . Dr . Tobias Kollmann
Prof . Dr . Bruno Müller -‐‑Closte rmann
Prof . Dr . K laus Pohl
Prof . Dr . Erwin P. Rathgeb
Prof . Dr . Rainer Unland
Prof . Dr . Stephan Zelewski

�

�

Abstract�
This�ICB�Research�Report�constitutes�the�proceedings�of�the�following�events�which�were�held�during�
the�Requirements�Engineering:� Foundation� for� Software�Quality� (REFSQ)� conference� 2012� in�Essen,�
Germany.�

� Engineering�for�Sustainable�Systems�(RE4SuSy)�

� Requirements�Engineering�Efficiency�Workshop�(REEW�2012)�

� Creativity�in�Requirements�Engineering�(CreaRE�2012)�

� Requirements�Prioritization�for�customer�oriented�Software�Development�(RePriCo)�

� International�Workshop�on�Software�Product�Management�(IWSPM)�

� Alive�Empirical�Study��

� Online�Questionnaires�

� Empirical�Research�Fair�

� Doctoral�Symposium�

�

i

�

�

ii

�

�

Table�of�Contents�
�

�

Part�I:�REFSQ�2012�Workshop�Proceedings� �

1� Preface� 5

2� Requirements�Engineering�for�Sustainable�Systems�(RE4SuSy)� 7

3� Requirements�Engineering�Efficiency�Workshop�(REEW)� 47

4� Creativity�in�Requirements�Engineering�(CreaRE)� 83

5� Requirements�Prioritization�for�Customer�Oriented�Software�Development�(RePriCo)� 129

6� International�Workshop�on�Software�Product��Management�(IWSPM)� 181

� �

Part�II:�REFSQ�2012�Empirical�Track Proceedings�
7� Preface� 259

8� Alive�Empirical�Study� 265

9� Online�Questionnaires� 281

10� Empirical�Research�Fair� 311

� �

Part�III:�REFSQ�2012�Doctoral�Symposium�Proceedings�
11� Preface� 327

12� Doctoral�Symposium� 333

�

iii

�

�

�

�

�

�

�

Part�I�

REFSQ�2012�Workshop�Proceedings�

1

�

2

1 Preface

Editor

Samuel A. Fricker
Blekinge Institute of Technology, Sweden, samuel.fricker@bth.se

REFSQ 2012 Workshop Proceedings

3

�

4

Preface from the RefsQ 2012 Workshops Chair

Samuel A. Fricker

Blekinge Institute of Technology, School of Computing
Campus Gräsvik, 371 79 Karlskrona, Sweden

samuel.fricker@bth.se

Conference workshops are important forum to initiate new research and to develop
young researchers. This is especially true for the International Working Conference
on Requirements Engineering: Foundation for Software Quality (RefsQ) series, which
targets an “I heard it first at RefsQ!” experience. The RefsQ workshops allow re-
searchers to expose their research ideas and early results. Each workshop provides
time and an interested audience from industry and academia to discuss the presented
ideas. In addition, the RefsQ workshops allow young, promising researchers to plan
and implement a researcher meeting for the first time. This experience and the net-
work they develop enable them to actively participate in the research community.

RefsQ 2012 called for proposals of workshops that have the potential to signifi-
cantly advance requirements engineering. Such workshops cover topics that are im-
portant for practice, are new to the field, have controversial viewpoints, and are unsat-
isfactorily understood. The dialogue among participants shall lead to interesting fol-
low-up research, empirical investigations, and industrial practice improvement.

The workshop proposals were evaluated based on the following criteria. A work-
shop should be led by a senior and a junior researcher to transfer knowledge and re-
search culture. Its topic should be novel to enable growth of the field. It should attract
both earlier and new RefsQ participants to enable growth of the community. Its for-
mat should allow generating, rather than only consuming knowledge. Finally, to ena-
ble innovation, established workshops were only accepted if successful previously.

RefsQ 2012 accepted five workshops. The new International Workshop on Re-
quirements Engineering for Sustainable Systems (RE4SuSy) addressed requirements
engineering in the sustainability context, which has become important for our society.
The Requirements Engineering Efficiency Workshop (REEW) was held for the second
time to discuss approaches for increasing requirements engineering efficiency. The
workshop on Creativity in Requirements Engineering (CREARE) was held for the
second time to address requirements engineering in an innovation context. The work-
shop on Requirements Prioritization for Customer Oriented Software Development
(RePriCo) was held for the third time to discuss prioritization of requirements. The
International Workshop on Software Product Management (IWSPM) joined RefsQ for
the first time to discuss approaches for managing software as a product. This proceed-
ings explains the paper selection processes and includes the accepted contributions.

On behalf of the RefsQ organization committee, I would like to thank all workshop
organizers and contributors to their excellent work. The workshops fulfilled their
expectations to our highest satisfaction.

5

REFSQ 2012 Workshop Proceedings

�

6

2 Requirements Engineering for Sustainable Systems (RE4SuSy)

Editors

Birgit Penzenstadler
Technische Universittät München, Germany, penzenst@in.tum.de

Martin Mahaux
University of Namur, Belgium, martin.mahaux@fundp.ac.be

Camille Salinesi
Université Paris 1 - Sorbonne, France, camille@univ-paris1.fr

Workshop Programme

 First International Workshop on Requirements Engineering for Sustainable
Systems (RE4SuSy)
Birgit Penzenstadler, Martin Mahaux, and Camille Salinesi

8

 Integrating Energy and Eco-Aware Requirements Engineering in the Development
of Services-Based Applications on Virtual Clouds
Jean-Christophe Deprez, Ravi Ramdoyal, and Christophe Ponsard

13

 Making use of scenarios for environmentally aware system design
Konstantin Hoesch-Klohe, and Aditya Ghose

20

 Green Requirements Engineering with the GREENSOFT Model Taking the whole
Lifecycle of Software into Account
Eva Kern, Markus Dick, Stefan Naumann, Timo Johann, Matthias Giesselmann,
and Patrick Lang

26

 Integrating the Complexity of Sustainability in Requirements Engineering
Martin Mahaux, and Caroline Canon

28

 RE4ES: Support Environmental Sustainability by Requirements Engineering
Birgit Penzenstadler, Bill Tomlinson, and Debra Richardson

34

 Writing Requirements for Electromobility and Smart Grids Systems: Challenges
and Opportunities
Jean-Charles Jacquemin, and Martin Mahaux

40

REFSQ 2012 Workshop Proceedings

7

First International Workshop on Requirements
Engineering for Sustainable Systems (RE4SuSy)

Birgit Penzenstadler (Organization Chair), Martin Mahaux (Organization
Chair), and Camille Salinesi (Program Chair)

1 Technische Universität München, Germany, penzenst@in.tum.de
2 University of Namur, Belgium, martin.mahaux@fundp.ac.be

3 Université Paris 1 - Sorbonne, France, camille@univ-paris1.fr

Abstract. Researchers have recently started to explore how to support
the elicitation and documentation of sustainability requirements. In the
mean time, ubiquitous socio-technical systems alter the way we live, and
consequently have a potentially huge impact on sustainability. As sus-
tainability is one of the biggest challenges facing humanity in the coming
decades, we must reinforce research in this direction and ensure it is ap-
propriately rooted in the practice. The workshop provided an interactive
stage to collaboratively define a research agenda in RE for sustainable
systems, and also to jumpstart collaboration through networking and
active discussion on concrete points of this agenda.

Keywords: requirements, sustainability, environment, society

1 Background & Goals

ICT-based systems are tremendously affecting the way we interact with the
world around us. These changes occur at a high rate and in shortening innova-
tion cycles. As suggested by the Smart2020 report [1], ICT can play a positive
role towards a more sustainable world. In that context, requirements engineers
will be key in ensuring that not only present needs, but also future generations
needs, can be satisfied. Indeed, in order to use the potential of ICT to reach more
sustainable behaviors, sustainability should be made a first class quality require-
ment. This is our overarching goal: ensure that sustainability requirements are
systematically and adequately elicited and documented when developing socio-
technical systems.

2 Addressed Themes

The most cited definition of the term “sustainable development” stems from the
so-called Brundtland report (“Our common future” [2]): “Sustainable develop-
ment is development that meets the needs of the present without compromising
the ability of future generations to meet their own needs”. It is interesting to

8

Requirements Engineering for Sustainable Systems (RE4SuSy)

note that, if it is commonly accepted that RE is mainly concerned with satisfying
present needs, then “sustainable RE” is a natural extension to this understand-
ing, anticipating on the satisfaction of future needs.

Sustainability has three major pillars: environment, society and economy.
Economy being targeted by traditional RE, we will concentrate on the two others.
Examples of environmental sustainability in RE research can be found in [3–
5]. The november 2010 edition of the IEEE Computer journal [6], addressing
Technology Mediated Social Participation gives an excellent idea of how ICT is
related to social sustainability. Although not limited to these items, the workshop
fosters discussion on:

– how requirements engineering can help in analysing sustainability issues;
– how to adapt existing or invent new elicitation, documentation, validation

techniques and tools for sustainability requirements;
– how to model sustainability requirements with all necessary context;
– how to learn from and interact with other sustainability-related domains

(e.g., environmental informatics);
– how to define, measure and assess sustainability as quality attribute.

As sustainability is a global and pervasive challenge, no particular industry
sector is excluded from our analysis. Any human activity that has an impact
on its society or its environment and involves a socio-technical system is on our
focus. Our aim is to see how such a socio-technical system can be better designed
to reduce its negative impacts, and strengthen the positive ones. However, some
industry sectors have been particularly under focus for the envisioned improve-
ment. The smart2020 report [1], Van Ypersele’s keynote at RE’08 conference [7]
and Pirolli et al. [6] suggest fields like Energy Supply, Transports, Buildings,
Agriculture, Waste, Governance, Health and more.

3 Submissions and Selection Process

In order to reach the goals of the workshop, we encouraged short submissions
formats for Problem Statements, Visions, Research Preview, Ongoing Research
Projects, Research Results. We invited posters, video clips or multi-media pre-
sentations of up to seven minutes with a one page abstract. We also invited short
papers of up to 6 pages LNCS style if authors wish to submit a more polished
relevant research.

For the selection process, the Program Chair assigned each submission to
three members of the Program Committee (PC) for a formal blind review pro-
cess. All authors (including the two Organization co-Chairs) indicated their
Conflicts of Interests with the PC members, so reviews could be performed ad-
equately. The PC members were Lorenz Hilty (University of Zürich), Steffen
Zschaler (King’s College London), Ruzanna Chitchyan (Leicester University),
Stefan Naumann (Trier University of Applied Sciences), Bill Tomlinson (Uni-
versity of California, Irvine), Toni Ahlqvist (VTT Finland), Brian Donnellan
(University of Ireland, Maynooth), David Stefan (University College London),

9

REFSQ 2012 Workshop Proceedings

Emmanuel Letier (University College London), Andrea Zisman (City Univer-
sity London), Debra Richardson (University of California, Irvine), and Alistair
Mavin (Rolls Royce, UK).

Being a starting community, and given the workshop’s goals, we asked the
PC members to focus their review on the relevance for the workshop and the
potential for triggering discussion on a research agenda for RE4SuSy, rather than
on maturity of the work or strength of the validation.

The reviews were published on the workshop wiki (https://sustainability.
wiki.tum.de/RE4SuSy) along with the papers to kickstart the discussion pro-
cess between all the stakeholders. The goal was to have authors enhancing their
papers guided by the reviews and the potential comments from other workshop
participants. This also made the review process entirely transparent. All sub-
mitted contributions were finally accepted. While this rate can be interpreted as
a sign of looseness of the review process, we regard it as an effect of the positive
and constructive review process and the quality of initial submissions.

4 Workshop Format

The focus was on interaction and participation. After a short energizing exercise
and peronal presentation, the authors had five minutes to present their contribu-
tion. These were followed by heavy discussions (up to 25 minutes), kickstarted
by the discussant assigned to each paper. After the break we brainstormed about
possible research agenda items for RE4SuSy. This resulted in a list of interesting
topics for our community to work on. Below we summarize initial contributions
and present those results.

5 Summary of Contributions

The submissions covered a vast area of expertise, indicating the breadth of the
RE4SuSy topic. Mahaux and Canon suggested in a position paper that the con-
cept of sustainability was indeed more complex than one could initially imagine,
and that it’s integration into RE would be even more complex. As a first answer
to this problem, researchers are developing new RE approaches, frameworks and
tools. Penzenstadler et al. described their plans towards a new RE approach
tailored to SuSy. Kern et al. presented a multi-media poster for GREENSOFT,
a conceptual reference model for Green and Sustainable Software. It tries to
characterize the what, where, when, how and who of this topic. Hoesch-Klohe
and Ghose suggested to use scenarios as a basis for analyzing environmentally
aware systems, showing their amenability for identifying the (approximated) en-
vironmental performance of a system. Two contributions highlighted aspects of
RE4SuSy in specific sectors, with more in details. Jacquemin and Mahaux pre-
sented their view on RE for smart grids and electro-mobility, while Deprez et al.
presented challenges on energy and eco-aware RE for cloud applications.

10

Requirements Engineering for Sustainable Systems (RE4SuSy)

6 Results

The raw brainstormings results are available online at https://sustainability.
wiki.tum.de/Research+Agenda+Items.

They served as a basis for suggesting the following research directions:

1. Understanding sustainability and sustainable systems: building interdisci-
plinary platforms for undertaking RE4SuSy research. How can we under-
stand what sustainability means and harness the knowledge of other disci-
plines to achieve sustainable systems, taking into account that there is no
single definition for sustainability, as it depends at least on the context and
evolve over time?

2. Roles and Scoping:
– Is RE4SuSy different to ordinary RE? Or is it just another NFR to

optimize?
– Who are the main RE4SuSy stakeholders?

3. Vertical / illustrative case study (E-mobility, SOA, etc.). It is suggested
that, in parallel to more theoretical studies, applied research on specific cases
should be undertaken to get a feeling from the practice and test preliminary
ideas. Specific interesting areas are suggested, such as Cloud Applications
for 1st level impacts, and smart grids for 2nd level.

4. Quality models, metrics, impacts, attributes that will help characterize pre-
cisely sustainable systems.

5. Cross-disciplinary future road mapping. Ensuring the satisfaction of future
needs requires having a look at the future. How can we impact the present
by looking at the future?

For each of the topics, there were at least one or two workshop participants
who wanted to actively conduct respective research.

7 Conclusion and Next Steps

The 1st International Workshop on Requirements Engineering for Sustainable
Systems (RE4SuSy) was a success and we received a lot of positive feedback.
We hope to organize the workshop next year, too, and to attract an increasing
number of submissions and participants for advancing and promoting research
on this challenging topic.

The wiki is still open so that workshop participants as well as further inter-
ested researchers and practitioners can discuss the topics of the research agenda.
Our next steps are to establish the research collaborations that were initiated
during the workshop. Thereby, the researcher who enlisted him-/herself for a
specific item on the research agenda serves as leader for the collaboration on a
designated topic and invites the others who were interested in contributing to
that same research agenda item. All participants agreed that it was crucial to
involve other disciplines and each of us is initiating contacts to researchers from
disciplines also related to sustainability.

We are looking forward to prosperous collaborations that will provide a strong
basis for a follow-up workshop.

11

REFSQ 2012 Workshop Proceedings

References

1. The Climate Group: Smart 2020: Enabling the low carbon economy in the infor-
mation age. Technical report, Global eSustainability Initiative (2008)

2. United Nations World Commission on Environment and Development: Our Com-
mon Future. In: United Nations Conference. (1987)

3. Mahaux, M., Heymans, P., Saval, G.: Discovering Sustainability Requirements: an
Experience Report. In: 17th REFSQ. (2011)

4. Cabot, J., Easterbrook, S., Horkoff, J., Lessard, L., Liaskos, S., Mazon, J.N.: Inte-
grating sustainability in Decision-Making processes: A modelling strategy. In: 31st
ICSE. (2009)

5. Stefan, D., Letier, E., Barrett, M., Stella-Sawicki, M.: Goal-Oriented system mod-
elling for managing environmental sustainability. In: Third Workshop on Software
Research and Climate Change. (2011)

6. Pirolli, P., Preece, J., Shneiderman, B.: Cyberinfrastructure for social action on
national priorities. IEEE Computer 43 (2010) 20–21

7. 16th IEEE International Requirements Engineering Conference. In: 16th IEEE
International Requirements Engineering Conference. (2008)

12

Requirements Engineering for Sustainable Systems (RE4SuSy)

Integrating Energy and Eco-Aware
Requirements Engineering in the Development

of Services-Based Applications on Virtual Clouds

Jean-Christophe Deprez, Ravi Ramdoyal, and Christophe Ponsard

CETIC - Center of Excellence in Information and Communication Technologies
29/3 Rue des Frères Wright, B-6041 Charleroi, Belgium

{jcd,rr,cp}@cetic.be - www.cetic.be

Abstract. Over the last decades, the energy and ecological footprint of
ICT systems, in particular those hosted at data centers, has grown signif-
icantly and continues to increase at an exponential rate. In parallel, re-
search in self-adaptation has yielded initial results where reconfiguration
of ICT systems at runtime enables dynamic improved quality of service.
However, little has been done with regards to requirement engineering
for self-adaptive system for a lower energy and ecological footprint. This
paper sketches a framework on how to best reconcile these aspects in a
conscious way covering requirements, design and run-time, by capturing,
reasoning, monitoring and acting upon a set of interlinked system goals.
We highlight a number of important problems to overcome for the ap-
proach to be feasible, present our current view on it and state interesting
research questions open for discussions.

Keywords: Energy and Eco-Aware Requirements, Services-Based Ap-
plications, Virtual Clouds

1 Introduction

In 2007, the total footprint of the ICT sector was already about 2% of the
estimated total emissions resulting from human activities, and this amount is
expected to exceed 6 % in 2020 [9]. In parallel, the Climate Savers Computing
Initiative (CSCI, which involves Intel, IBM, and Google among others) main
aim is to reduce annual CO2 emissions from the IT sector by 54 million metric
tons by 2011 and an additional 38 million metric tons by 2015, which is the
equivalent of AC 3.75 billion in annual energy cost savings. Its next focus is on
energy efficiency of computing equipment (including networking systems and
devices), adoption and deployment of power management, and promotion of
smart computing practices (particularly developers).

In response to this trend, hardware and software are designed to become
more aware of their ecological impact. Among the current new trends, cloud
computing has received considerable attention as a promising approach for
delivering energy and eco-aware ICT services by improving the utilization of

13

REFSQ 2012 Workshop Proceedings

data center resources. In principle, cloud computing can be an inherently energy-
efficient technology for ICT provided that its potential for significant energy
savings is fully achieved at operation time, for instance, by enabling an eco-aware
management of a cloud infrastructure. Besides, a highly questionable assumption
regarding energy-effectiveness is precisely that energy savings necessarily equate
to reduce carbon emissions [14]. Virtualisation has increased the capability of
self-adaptation and self-reconfiguration of systems transparent to the end users
[5].

However current research results do not fully address the problem of energy
and eco-awareness in virtualized cloud infrastructure:

– most of the research addresses design-time solutions to provide run-time
adaptation, while requirements engineering for self-adaptive software sys-
tems has received less attention [16].

– as our dependency on such systems is increasing, the underlying energy costs
are also rising, which stresses the need for new energy-efficient and eco-
friendly technologies that enable new pricing models for data centers [3].

– the kind of energy source (green vs brown) is not taken into account.

Within this context, this paper introduces a new approach to help software
engineers address energy and ecological requirements when developing service-
based applications developed to run in virtualized cloud environment, as well as
to produce self-adaptable architectures that can optimize the energy and ecolog-
ical performance at runtime. This approach starts by promoting goal oriented
requirements engineering (GORE), where energy goals will be elicited and refined
into energy requirements that specify specific service level objectives (SLO) for
the runtime behavior of the software service. Second, the approach guides soft-
ware engineers in producing design models that can be self-adaptive to achieve
energy performance at runtime while keeping other parameters of the quality of
service under control.

The remainder of the paper is structured as follows. Section 2 first introduces
the key concepts of the approach, which is presented in Section 3. Section 4 then
highlight some related work. Section 5 finally summarises some key research
questions.

2 A Goal-Oriented Background

In this section, we introduce key definitions and concepts used in the proposed
approach, notably, goal oriented requirement engineering and measures and as-
sociated key performance indicators on energy and ecology in cloud environment.

Goal-oriented requirements engineering (GORE) relies on the use of goals
for eliciting, elaborating, structuring, specifying, analyzing, negotiating, docu-
menting, and modifying requirements [13]. Such use is based on a multi-view
model showing how goals, objects, agents, scenarios, operations, and domain
properties are inter-related in the system-as-is and the system-to-be. A goal is
an intent that can address different types of aspects. For instance, a behavioral

14

Requirements Engineering for Sustainable Systems (RE4SuSy)

goal describes how the expected system should behave, while a soft goal describes
wishes with less clear-cut criteria (typically improve, increase/reduce or maxi-
mize/minimize a given property of the system). Soft-goals are at the heart
of the proposed approach, as they can deal with energy-effectiveness
and eco-awareness notably through first, improved adaptability of the
architecture of service-based applications and second, minimization
of the associated energetic needs and ecological footprints of service-
based applications in operation. In GORE, Goals are refined in subgoals and
other relationships between goals (such as obstacles, conflicts, reinforcement) are
explicitly elicited to form a goal graph. Alternative designs can also be captured.
A requirement is a terminal goal (lead node in a goal graph) which is under the
responsibility of a single agent (human or sub-system). The satisfiability of a
goal can be specified by a measurable key performance indicator (KPI).

In the proposed approach these goal constructs will be used to show explic-
itly how energy and ecological goals relate to other non-functional goals of the
system-as-is or the system-to-be. We will also define energy and ecological key
performances indicators.

In the context of cloud computing, the metrics used to measure KPIs on
energy usually focus on the energy consumed by hardware in the data cen-
ters, which is however not the only dimension [1]. This raises the first ques-
tion: RQ#1: How to deal with the lack of normalization for energy-
effectiveness metrics and the lack of ecological-awareness regarding
available energy sources ? Our idea is to overcome two of the main current
shortcomings, namely the lack of normalization for energy-effectiveness metrics
and the lack ecological-awareness regarding available energy sources. Energy nor-
malization is important if new pricing models per energy consumption and car-
bon emission are to be developed by cloud infrastructure provider and perceived
fair by service providers. In particular, pay per Watts could lead to different bills
if the same service with same input is scheduled on older or new more efficient
hardware. Green vs. brown energy measures also provides an important aspect
to consider in pricing models. For instance, if a software service can easily be
scheduled during green energy production peaks then it could be given priority
in case of overbooking of service providers.

The collection of energy KPI is triggering a second research question: RQ#2
How to match fine grained energy consumption of VMs and even
software components in a VM with the limited capabilities of mea-
surement at the hardware level only?. Indeed most data centers currently
providing Infrastructure as a service (IaaS) are limited to general physical mea-
sures. A possible answer is that energy-consumption models have to be developed
to normalize and estimate the desired measures as precisely as possible. For in-
stance, the combination of CPU-usage percentage, disk accesses and network
transfers measures will be used to define the energetic consumption of software
services components. Kansal et al. have proposed a model to infer VM consump-
tion from hardware energetic consumption [10] and could be explored to achieve
finer grain measurements.

15

REFSQ 2012 Workshop Proceedings

3 From Energy Requirements to Runtime Eco-driven
Evolution

The scope targeted for the proposed approach is the following, on the one hand,
the infrastructure (IaaS) provider owns the hardware and the virtual infrastruc-
ture software and on the other hand, the software (SaaS) service provider owns
and packages a service-based application to be deployed and operated at the IaaS
provider. In this setup, the SaaS provider has little control over the scheduling
and placement policies of the IaaS provider. It is however anticipated that IaaS
provider will publish the required KPI measurements. As mentioned in the defi-
nition section, IaaS providers only have measurements on hardware consumption
at the server rack level; however, new accurate estimation models can help to in-
fer energy measurement at the VM and soon at a finer grain software component
in a VM. The proposed approach is independent of who provides the software
specific energy measurements. It can be the IaaS provider or even an indepen-
dent energy service provider who acts as a trusted third party between the IaaS
and SaaS providers. The important aspect is that energy measurement be fair
and trusted by the SaaS providers. The proposed approach also assumes that
the IaaS provider accepts to share energy measurements with the SaaS provider
who will in turn use these measurements to improve the quality profile of its
software service-based application.

To reduce the energy-consumption and improve the eco-friendliness of a
service-based application, we claim that energy and eco-awareness must become
a core principle of the architecture, design and implementation of all software
components involved at the different layers (Infrastructure and application). This
rather disruptive, cleans slate approach, where different layers of an ICT system
are re-designed and re-implemented to better handle a given concern, was fol-
lowed with great success by Donofrio et al. [6] who showed how co-design with
all aspects of the infrastructure and of the application in mind helps to make
high power computing more efficient while consuming less energy.

Figure 1 gives a high level view of our approach. At specification and
design level, it starts with a requirements elicitation and analysis of
a new software service partly driven by library of energy goals ex-
plicitly related to other application?s functional and non-functional goals. This
helps architects to select the most appropriate architecture for developing a
self-adaptable software service, and second, to generate the KPI and thresholds
specific to the software service under development. An interesting question is
RQ#3: how to relate KPI of contributing/conflicting goals?. To some
extend the normalization discussed earlier helps but multiple criteria must be
taken into account to design system adaptation policies that balance ecological
and other SLA goals appropriately.

The next step consists of propagating these KPI and thresholds at detailed
design level, for instance, annotating elements of UML diagrams with particular
energy KPI thresholds. These annotations are then used at compile time to
inject the necessary measurement probes in the application to enable runtime
measurements. These runtime measurements will then be used at three different

16

Requirements Engineering for Sustainable Systems (RE4SuSy)

Fig. 1. Eco-aware Evolution Framework

levels, at software service operation level, at maintenance level of the particular
software service and at a more general level for the development of new software
services. The rest of this section details them.

At the service operation level, the KPI measurements are used
by the service itself to perform self-adaptation actions that will im-
prove its energy runtime performance while satisfying the other SLA
aspects such as performance and security. Self-adaptation is limited to
anticipated variability injected in the service architecture. A legitimate question
is: RQ#4: how to identify variability point at design time and design
adaptations policies that balance ecological and other SLA goals. For
example, depending on the usage load, a self-adaptable system would vary its
configuration between an energy costly mirror-oriented data storage and a more
economic but also less available single centralized storage. In addition, an infras-
tructure is required to manage the KPI monitoring and adaptation policy rules.
A question here is RQ#5: which concrete and efficient form can this take
in a SOA/Cloud architecture? Middelware level will allow to benefit from
application transparency and scalability but attention must be given to avoid
consuming more energy than what is saved for example by triggering frequent
reconfiguration or gathering too large amounts of historical data.

At the maintenance level, the KPI measurements provide valuable
feedback to architects and developers of the measured software ser-
vice. In turn, they can refactor the software service based on concrete energy
data and clearly identify the energy bottlenecks of the software service. While
self-adaptation can be performed along a few anticipated energy bottlenecks, the
manual refactoring based on energy KPI will address more intricate behaviours
of the software service that could not be anticipated at the design time.

At the general level, an overall guidance is needed to develop new
service-based applications with better energy and ecological profiles.
To formulate appropriate guidance to architects at requirement and design phase,

17

REFSQ 2012 Workshop Proceedings

data on many applications are needed to cross relate their energy goals, their
architectures, their variability points, etc. A question here is RQ#6: What
data on architectures, variability points to capture and cross-relate to
KPI to enable efficient ecological guideance of future applications?

4 Related Works

In practice, current research on energy-aware cloud computing is limited to im-
proving the energy-efficient operation of computer hardware and network infras-
tructure. For instance, Intel has recently pushed server hardware with increased
computing efficiency targeted for data center providing a virtual infrastructure
[8], while [17, 11, 7] focused on the consolidation of virtualized infrastructure in
data centers to improve energy efficiency. The FP7 research projects FIT4Green
[2] and GAMES [4] are further advancing on consolidation techniques in virtual-
ized environment, while [12] also proposes an approach to creating environmental
awareness in service oriented software engineering.

However, none of these researches ensure energy-awareness at the different
steps and levels of a service-based application to run in a virtualized cloud. In
particular, very few methodology is currently proposed to support the require-
ments engineer and design modeling of systems that manages self-adaptation
according to energy and eco-awareness. A good survey confirming the currently
limited work devoted to this domain is presented in [15]. Without more en-
ergy consideration at the requirement and design phase, the development of
energy-aware code at the various layers, infrastructure, middleware and service
application is unlikely to be successful. We believe that the proposed approach
that supports the requirements engineering and design modeling for energy-and
eco-aware, self-adaptive systems will contribute further improve the energy and
ecological profile of ICT systems running in virtualised cloud environments.

5 Conclusion and Future Works

In this paper, we sketched an approach to improve the ecological awareness
of service-based applications. Our goal is not to propose a definitive solution
but rather to highlight a number of open research questions and propose some
partial answers. To increase the impact of the approach, it is worth noting that its
application is not limited to new development project but is applicable to existing
systems. The main difference resides in the self-adaptation, in particular, the
architecture of an existing software service will not initially include well-defined
and controlable variability points. Thus, the guidance on refactoring will also
cover existing service-based systems.

References

1. Baliga, J., Ayre, R.W.A., Hinton, K., Tucker, R.S.: Green cloud computing: Bal-
ancing energy in processing, storage, and transport. In: Proceedings of the IEEE.
vol. 99 (January 2011)

18

Requirements Engineering for Sustainable Systems (RE4SuSy)

2. Basmadjian, R., Bunse, C., Georgiadou, V., Giuliani, G., Klingert, S., Lovasz, G.,
Majanen, M.: Fit4green - energy aware ict optimization policies. In: Proc. COST
Action IC0804 on Energy Efficiency in Large Scale Distributed Systems (2010)

3. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. The Computer Journal 53(7),
1045–1051 (2009)

4. Bertoncini, M., Pernici, B., Salomie, I., Wesner, S.: Games: Green active manage-
ment of energy in it service centres. In: CAiSE Forum 2010, Hammamet, Tunisia,
June 7-9. pp. 238–252 (2010)

5. Cheng, B.H.C.e.a.: Software engineering for self-adaptive systems: A research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer
Science, vol. 5525, pp. 1–26. Springer (2009)

6. Donofrio, D.e.a.: Energy-efficient computing for extreme-scale science. Computer
42, 62–71 (November 2009)

7. Garg, S.K., Yeo, C.S., Buyya, R.: Green cloud framework for improving carbon
efficiency of clouds. In: Proc. of the 17th Int. Conf. on Parallel Processing - Volume
Part I. pp. 491–502. Euro-Par’11, Springer-Verlag, Berlin, Heidelberg (2011)

8. Intel: Breakthrough security capabilities and energy-efficient performance for cloud
computing infrastructures (2010), http://software.intel.com/file/26765

9. Juan-Carlos L̈ı£¡pez-L̈ı£¡pez, Giovanna Sissa, L.N.: Green ict: The information
society’s commitment for environmental sustainability. In: UPGRADE, vol. XII.
Council of European Professional Informatics Societies (CEPIS) (October 2011)

10. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.A.: Virtual machine
power metering and provisioning. In: Hellerstein, J.M., Chaudhuri, S., Rosenblum,
M. (eds.) SoCC. pp. 39–50. ACM (2010), http://doi.acm.org/10.1145/1807128.
1807136

11. Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of virtual ma-
chines for real-time cloud services. Concurr. Comput. : Pract. Exper. 23, 1491–1505
(September 2011)

12. Lago, P., Jansen, T.: Creating environmental awareness in service oriented software
engineering. In: Proc. s of the 2010 Int. Conf. on Service-oriented Computing. pp.
181–186. ICSOC’10, Springer-Verlag, Berlin, Heidelberg (2011)

13. van Lamsweerde, A.: Requirements engineering: from system goals to UML models
to software specifications. John Wiley and Sons, Ltd. (2009)

14. Linthicum, D.: Beware: Cloud computing’s green claims aren’t always
true. Infoworld (July 2011), http://www.infoworld.com/d/cloud-computing/

beware-cloud-computings-green-claims-arent-always-true-167984

15. Mahaux, M., Heymans, P., Saval, G.: Discovering sustainability requirements: An
experience report. In: Berry, D.M., Franch, X. (eds.) REFSQ. Lecture Notes in
Computer Science, vol. 6606, pp. 19–33. Springer (2011)

16. Qureshi, N.A., Perini, A.: Engineering adaptive requirements. In: Proceedings of
the 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems. pp. 126–131. IEEE Computer Society, Washington, DC, USA (2009)

17. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud comput-
ing. In: Proceedings of the 2008 conference on Power aware computing and systems.
pp. 10–10. HotPower’08, USENIX Association, Berkeley, CA, USA (2008)

19

REFSQ 2012 Workshop Proceedings

Making use of scenarios for environmentally
aware system design

Konstantin Hoesch-Klohe, Aditya Ghose

Decision Systems Lab (DSL),
School of Computer Science and Software Engineering,

University of Wollongong.

Abstract. This paper motivates the use of scenarios as a basis for en-
vironmentally aware system design, by showing their amenability for
identifying the (approximated) environmental performance of an to-be
system. In particular, we describe two complementary techniques for as-
sessing and comparing the environmental performance of scenarios and
how this can promote environmentally friendly decision making.

Keywords: Environmentally aware design, Requirements Engineering
(RE), Scenarios, Resource modelling, Non-functional requirements (NFR).

1 Introduction

While much research attention has focused on developing alternative energy
sources, automotive technologies or waste disposal techniques, we often ignore
the fact that our behaviour (or that of a system) is a critical contributor to our
environmental footprint. It is therefore crucial that we start to analyse existing-
and to-be system behaviour and the intentions that give rationale to the former,
in the context of our accumulated environmental debts. Requirements engineer-
ing (RE), supports the identification, analysis and specification of stakeholder
intentions and their refinement to a concrete system design, which gives rise to
the particular behaviour from its behaviour. We therefore believe that RE is the
right starting point for nurturing the development of environmentally friendly
systems (this has also been pointed out in e.g. [1]). Moreover, requirements
engineering principles and techniques are not only applicable to the design of
technical systems (e.g. a software system), but can also help us to understand
and improve non-technical systems (e.g. an organisation).

For requirements engineering to succeed in this exercise, we must be able
to make informed decisions among alternative requirements and system designs.
However, during RE no concrete materializations of an envisioned system (and
its potential alternatives) are available, which limits our ability to assess their
environmental performance and therefore to make informed decisions. We argue
that it is nevertheless possible to assess the environmental performance of an
envisioned system (even early in the requirements engineering process), by mak-
ing use of scenarios and scenario-based requirements engineering techniques. In

20

Requirements Engineering for Sustainable Systems (RE4SuSy)

particular, we describe two complementary techniques for assessing and com-
paring the environmental performance of alternative scenarios and how this can
promote environmentally friendly decision making. This is aligned with exist-
ing work on the use of scenarios in the context of identifying and analysing
non-functional requirements (e.g. in [2,3,4]).

In the following this paper (1) motivates scenarios in the context of envi-
ronmentally aware system design, (2) proposes techniques for determining the
environmental performance of scenarios, and (3) outlines how the former can
form the basis for environmentally informed design decision.

2 Scenarios - snapshots of a environmental performance

A scenario is a storyline or script describing a system’s behaviour in a particular
situation of events. A scenario therefore contains information about the actions
of an existing or envisioned system, in a particular context. The representation
of a scenario can vary from a narrative description (a storyline) to a precise
formal representation. For example, the scenario below is a narrative snapshot,
in the context of a delivery company, told from the system perspective1.

Scenario 1: A parcel for Jim has arrived at Pit Street hub. The parcel is trans-
ported to Jim’s home address. On arrival, Jim is not available and a notification
message is left. The parcel is delivered to the closest pick up location, to be picked
up by Jim.

Scenarios are interesting in the context of environmentally aware system de-
sign, since they offer the right level of abstraction - their concrete representation
of system behaviour (in the given example the system is the delivery company)
eases the correlation of environmental performance values. Hence, scenarios al-
low us to not only get a behavioural snapshot of a system, but also a snapshot of
its performance in a given situation. These snapshots are not sufficient to deter-
mine, e.g. the total carbon dioxide emission of a system for a particular period of
time. However, we are not in the game of carbon accounting, but rather seek to
support informed design decisions. When confronted with alternative scenarios,
it is sufficient to know which scenarios perform more preferred than others, to
make environmentally aware decisions.

Scenarios can not only be identified by observing the behaviour of a realized
system, but also (1) early in the RE process, by envisioning the behaviour of a
to-be system (e.g. see [5]) and/or (2) later in the RE process, by extraction from
designs like an use case-, activity- or sequence diagrams (e.g. see [6]). In either
case, for scenarios to form the basis for environmentally aware design decisions,
their environmental performance must be explicated.

In short, to identify the environmental performance of a scenario, we first
identify all (system) actions within the scenario. For example, the narrative
scenario given above can be translated into a sequence of actions as shown in
Figure 1. We then associate (by manual- or automated annotation) with each

1 Scenarios can also be captured from the user perspective.

21

REFSQ 2012 Workshop Proceedings

action a performance value, using one of the methods described in the follow-
ing subsection. The overall performance of the scenario is then determined by
accumulating all performance values along the sequence of actions.

Fig. 1. The parcel delivery scenario as a sequence of actions

2.1 Identifying a scenario’s environmental performance

In the following we describe two complementary techniques for correlating en-
vironmental performance values with actions of a scenario. This requires us to
make precise the abstract notion of environmental performance. There are nu-
merous ways in which “environmental performance” can be captured, i.e. car-
bon dioxide equivalent (CO2-e) emission2, water consumption, waste generation,
damage to fauna and flora, air quality, or some combination of the former. For
ease of elaboration and without loss of generality, we use CO2-e as the only
non-functional requirement of interest.

Educated guess: In this method the requirement engineer makes an educated
guess on the expected CO2-e emission of each action of a scenario. Note that
by guessing the CO2-e emission performance, the context of an action is taken
implicitly into account. However, the quantitative amount of CO2-e emission
(e.g. in number of kilograms) is hard to guess and in practice often leading to
unrealistic values. We therefore recommend to abstract away from a quantitative
scale to a qualitative scale. For example, the traffic light scale could be used,
where red could denote a high CO2 emission impact, “orange” a moderate emis-
sion impact and green a low emission impact. We belief (and our observations
confirm this) that practitioners have a good “gut-feeling” in guessing the CO2-e
emission performance, when working with a simple scale. In the (likely) case
that the assessment is done by more than one person, we further recommend to
jointly do the initial assessments, such that a shared understanding of “high”
and “low” emitting actions can emerge. A possible assessment of our running
example (using the traffic light scale) is given in Figure 2.

Fig. 2. Scenario assessment using the traffic light scale

2 CO2-e is an expression of other greenhouse gases as their carbon dioxide equivalent
by their global warming potential (CO2 itself has a global warming potential of 1).

22

Requirements Engineering for Sustainable Systems (RE4SuSy)

This method is interesting in the case that (1) the envisioned system and
context is still vague and as a consequence more detailed values cannot be deter-
mined, i.e. early in the requirements engineering process and (2) an initial “quick
and dirty” overview of the performance of the scenario landscape is desired.

Modelling the resource context: More precise CO2-e emission values can be
determined, by considering the context in which an action is (or will be) per-
formed. We argue that the relevant context for the environmental performance
of an action is given by the resources it uses. More precisely, the emission values
of an action are influenced by: (1) What resources are used, e.g. driving a truck
with a particle filter causes less emission than driving the same truck without the
particle filter; (2) How the resource is used, e.g. driving an empty truck causes
less emission than driving a fully loaded truck; (3) The intensity with which a
resource is used, e.g. driving a truck 100km or 200km; and (4) What other sub-
resources are used e.g. the fuel used for combustion and the associated carbon
emission for gathering and transporting the fuel to the petrol station (if this
level of detail is desired - again we are not in the game of carbon-accounting).

In [7] a way of modelling this “usage-cost” interplay among resources (as well
as other relationships like “is-a” and “part-whole” for other reasoning purposes)
and actions is described. Essentially, the proposed resource model can be queried
by a functional call, which states what resource is used, how it is used, and with
which intensity, returning the respective performance values. For example, the
call use(truck, loaded, 30km) (given a particular resource model instance) could
return a value of 8.4kg CO2-e emission. Given the former, each action in a sce-
nario is annotated with a functional call. The expression is evaluated w.r.t. to the
currently selected resource model instance (other instances could be considered
to reflect an alternative context) and returns the corresponding emission figures.
Figure 3 shows the running example with the annotation of functional calls.
Note that values can also be annotated manually, e.g. the emission of the action
“leave message” has been considered as neglectable and is therefore annotated
with “0 kg CO2-e”.

Fig. 3. Scenario assessment using a functional call to a resource model

This method is interesting in the case that a decision among alternative
scenarios is to be based on concrete and arbitrarily precise3 CO2-e emission
performance values. Since the resources and their usage-cost relations need to
be captured this method is more suitable later in the requirements engineering

3 The more fine-grained the resource model the more precise its answers, but also the
higher the cost for building and maintaining the model.

23

REFSQ 2012 Workshop Proceedings

process.

Combining performance values: The CO2-e emission performance values
associated with each action can now be used to determine the performance of a
scenario. In case of quantitative CO2-e emission values, two values are combined
by summation, such that the performance of a scenario is simply the sum over
all values. For example, the quantitative CO2-e emission performance of scenario
one is 9.8kg. In case of qualitative CO2-e emission values, two values are com-
bined by selecting the least preferred, such that the performance of a scenario is
simply the performance of its least performing action. For example, the qualita-
tive CO2-e emission performance of scenario one is “high”. Although, the later
would treat two scenarios with values “high-high-high” and ”low-low-high” as
equally preferable, it allows us to treat both qualitative and quantitative mea-
sures in the same (algebraic) framework, i.e. the c-semi-ring framework [8]. This
is important in the cases where some scenarios are given qualitative and others
quantitative values.

2.2 Scenarios and environmentally informed decision making

An (environmentally aware) decision can be made, whenever there is choice -
i.e. whenever it can be chosen among alternatives. In this paper we promote the
use of scenarios as the basis of choice among alternative systems. Two differ-
ent scenarios can be treated as alternatives, if they realize the same high-level
stakeholder objectives (in which case the stakeholder objectives are treated ax-
iomatically), and/or if they describe the behaviour of a system w.r.t. the same
sequence of events. In the running example (which does not consider stakeholder
objectives) the sequence of events is “parcel for Jim has arrived at Pit Street
hub” before “Jim is not available”. An alternative to scenario one, taking into
account the same sequence of events, is scenario two (Figure 4 is a graphical de-
scription of the alternative scenario with associated qualitative and quantitative
CO2-e performance values):

Scenario 2: A parcel for Jim has arrived at Pit Street hub. Send mo-
bile text message to Jim to confirm his availability on the expected arrival. Jim
replies that he is not available during this time. The parcel is delivered to the
closest pick up location, to be picked up by Jim.

Applying the associated qualitative values, scenario one and two are equally
preferred. However, applying the quantitative values, scenario two (total CO2-e
emission of 7.65kg) is preferred over scenario one (total CO2-e emission of 9.8kg).
Such preference relation among alternative scenarios can support environmen-
tally aware decision making and system design at least in the following. (1) The
chosen set of scenarios can be used to extract new requirements. A way of deriv-
ing requirements from scenarios has, for example been described in [9]. (2) The
chosen set of scenarios can be used to analyse existing requirements against the
set of preferred scenarios (e.g. see [10]), which can then form the basis for adapt-
ing the existing requirements. However, in all cases the decision for a particular
set of requirements must take into consideration the impact on other functional

24

Requirements Engineering for Sustainable Systems (RE4SuSy)

Fig. 4. Alternative scenario with concrete and abstract CO2-e performance val-
ues

and non-functional requirements, i.e. the global impact of a particular decision
must be understood.

3 Conclusion & Future Work

This paper motivates the use of scenarios as a basis for building environmentally
sustainable systems. In this context, two complementary techniques, which can
be used to assess the environmental impact of scenarios have been described as
well as how this can form the basis for environmentally aware decision making.

Future work is concerned with the following question. Given a set of (envi-
ronmentally preferred) scenarios describing a to-be system, how can an existing
system design be minimally changed, such that it is shown to entail all to-be
scenarios. Minimal change is important, because it protects existing investments
in the context of desired change. We seek to answer this question by leveraging
“light-weight” formal machinery (limiting the burden on the engineer).

References

1. Stefan, D., Letier, E., Barrett, M., Stella-Sawicki, M.: Goal-oriented system mod-
elling for managing environmental sustainability. In: 3rd Workshop on Software
Research and Climate Change. (2011)

2. Sutcliffe, A., Minocha, S.: Scenario-based analysis of non-functional requirements.
In: REFSQ. (1998) 219–234

3. Gregoriades, A., Sutcliffe, A.: Scenario-based assessment of nonfunctional require-
ments. IEEE TSE 31(5) (2005) 392 – 409

4. Nixon, B.: Management of performance requirements for information systems.
Software Engineering, IEEE Transactions on 26(12) (2000) 1122–1146

5. Hooper, J., Hsia, P.: Scenario-based prototyping for requirements identification.
In: ACM SIGSOFT Software Engineering Notes. Volume 7., ACM (1982) 88–93

6. Briand, L., Labiche, Y.: A uml-based approach to system testing. Software and
Systems Modeling 1 (2002) 10–42

7. Hoesch-Klohe, K., Ghose, A.: Towards Green Business Process Management. In:
SCC. (2010)

8. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM (JACM) 44(2) (1997) 236

9. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting requirements from scenarios
with ILP. Lecture Notes in Computer Science 4455 (2007) 64

10. Sutcliffe, A.: Scenario-based requirements analysis. RE (1998)

25

REFSQ 2012 Workshop Proceedings

Green Requirements Engineering with the GREENSOFT
Model

Taking the whole Lifecycle of Software into Account

Eva Kern, Markus Dick, Stefan Naumann, Timo Johann, Matthias Giesselmann,
Patrick Lang

Umwelt-Campus Birkenfeld, Trier University of Applied Sciences,
Institute for Software Systems
greensoft@umwelt-campus.de

1 Green and Sustainable Software Engineering

In an earlier paper we gave the following definition: “Sustainable Software
Engineering is the art of defining and developing software products in a way so that
the negative and positive impacts on sustainability that result and/or are expected to
result from the software product over its whole lifecycle are continuously assessed,
documented, and optimized.”

Based on that definition it is required to pay attention to the whole life
cycle of a software product from beginning on, starting with the requirements
review. Since many different processes, products and services are involved in
this life cycle, which have impacts on sustainable development, they must be
considered in order to figure out if a software product and even its engineering
process is green or not. In view of the fact that several design and implementation
decisions are made in the requirements phase, it is necessary that the consequences of
these decisions are taken into account at this phase.

2 Reference Model for „Green Software“

Based on this aspects we developed a conceptual reference model shown in
our multi-media presentation that supports sustainable production and usage of
software. It includes a life cycle of software products, sustainability criteria and
metrics for software products, procedure models as well as recommendations for
actions and tools for purchasers, developers, administrators, and users. In that way the
different user roles are addressed.

The introduced Lifecycle for Software Products supports responsible persons in
estimating the impacts on sustainable development by software products. The
approach based on Life Cycle Assessment (LCA) [1] takes the direct effects (Green
IT) and the indirect effects (Green by IT) into account.

The quality model (based on [2–4]) gives an overview of potential aspects which
can be taken as Sustainability Criteria and Metrics for Software Products. The
metrics need to be defined for specific types of software. In order to support software
developers during the development process and administrators and users in

26

Requirements Engineering for Sustainable Systems (RE4SuSy)

configuring or choosing software we present a measurement model. The method is to
compare the energy consumption of different software or different configurations of
software.

The generic Procedure Model takes an organizational perspective look at the
development phase of a software product and extends software development
processes by sustainability aspects.

As examples for Recommendations for Actions and Tools the model includes a
knowledge base with a collection of guidelines, tips and hints in the area of
sustainable information technology. Regarding the Green Web the Firefox Add-on
“Green Power Indicator” displays whether the called site is hosted on a server, which
is operated with environment-friendly produced electricity.

3 Conclusion

We present a conceptual reference model for Green and Sustainable Software that
comprises a software products’ life cycle, direct and indirect effects, different user
roles and approaches for activities. As a reference model its objective is to structure
concepts, strategies, activities, and processes of Green Software Engineering
and to organize research in the field of Sustainability Informatics. With our
model, requirements engineers can take different aspects of sustainable and
green software into account. This comprises e.g. aspects like software
architecture decisions, tools for measuring energy-efficiency code and what
impact each software engineering phase onto environment has.

4 References

1. Deutsches Institut für Normung e.V. (2009) Environmental management - Life cycle
assessment - Principles and framework (ISO 14040:2006); German and English version EN
ISO 14040:2006. Beuth, Berlin 13.020.10(DIN EN ISO 14040:2009-11 (D))

2. Albertao F, Xiao J, Tian C, Lu Y, Zhang KQ, Liu C (2010) Measuring the Sustainability
Performance of Software Projects. In: 2010 IEEE 7th International Conference on e-
Business Engineering (ICEBE 2010), Shanghai, China, pp 369–373

3. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT Model: A Reference
Model for Green and Sustainable Software and its Engineering. SUSCOM 1(4):294–304.
doi:10.1016/j.suscom.2011.06.004

4. Taina J (2011) Good, Bad, and Beautiful Software - In Search of Green Software Quality
Factors. CEPIS UPGRADE XII(4):22–27

Acknowledgments This paper evolved from the research and development project
“Green Software Engineering” (GREENSOFT), which is sponsored by the German
Federal Ministry of Education and Research under reference 17N1209. The authors
are solely responsible for the content.

27

REFSQ 2012 Workshop Proceedings

Integrating the Complexity of Sustainability in Requirements
Engineering

Martin Mahaux1, Caroline Canon2

1 PReCISE Research Centre, University of Namur, Belgium

2Sustainable Development Research Group, University of Namur, Belgium
{martin.mahaux, caroline.canon}@fundp.ac.be

Abstract. [Context and Motivation] While having a simple definition,
Sustainable Development is a broad, interdisciplinary and complex concept.
Applying this concept when designing products is therefore a complex task that
requires a lot of interdisciplinarity. [Question/Problem] As software continues
to invade all aspects of our lives under ever-renewed forms, we realize that
designing sustainable software is probably of paramount difficulty and
importance. [Position] This position paper argues that this new field will have
no other option than integrating this complexity into its design practices
through opening collaborations with sustainability experts.

2. Introduction

Sustainability Informatics has been suggested as a new research field in 2010 [1]. It is
born out of the Environmental Informatics field, which is now comprised within
Sustainable Informatics. Within this discipline, Sustainable Software has received a
significant attention. Results have been mainly published in specialized venues, of
which a nice summary can be found in [2]. In this publication, Naumann et al.
combine many existing works, as well as environmental sciences knowledge, to lay
solid foundations for studying Sustainable Software. Their holistic study result in new
definitions for Sustainable Software and its Engineering, as well as in a framework
for designing sustainable software called the GreenSoft Model. It specifies where to
look for software impacts on sustainability and makes initial suggestions on how to
measure them and how to deal with them according to your process and role
regarding software. This is, to our knowledge, the most advanced and comprehensive
model of the genre to date.

However, while certainly containing useful material, we still consider it as a mostly
empty box, that will have to be filled with more concrete techniques and tools for
designing sustainable software. In particular, we noted that the question of the
complexity of the sustainability concept and how to integrate this complexity into
already complex software engineering is mentioned, but escaped, rather silently.

28

Requirements Engineering for Sustainable Systems (RE4SuSy)

3. Sustainability: a complex concept.

The university of Namur (FUNDP) has recently set up an interdisciplinary research
group around sustainability. It is pursuing mainly 4 research directions, one of them
being centered on the definition of the sustainability concept. When the Computer
Sciences oriented authors of this paper invited this group to collaborate, they expected
to receive answers. Instead they realized there were no simple answers, and that
complex answers were not ready yet.

The Sustainability Research Group is composed of researchers in Human and Nature
Sciences, aiming at elaborating a map of research in “Sustainable development”.
What is in fact a research in Sustainability? What are the criteria to say that a research
concerns Sustainability? Realizing that each discipline had a specific viewpoint on
sustainability, they decided to start with having each discipline to present his
viewpoint and discuss it. Divergences and convergences are carefully kept aside for
later reconciliation. The first and only current result is that researchers are now aware
that a long time will be needed in order to answer these questions, due to the
intrinsically interdisciplinary nature of the sustainability concept. Our position is that
Requirements Engineers should follow on these results and collaborate in order to
translate them to their own discipline.
�
Notwithstanding this, research has already delivered frameworks to analyze
sustainability. The famous Life Cycle Analysis (LCA) framework, used in [2], is a
prominent example, but its scope is quite limited. More complex models can also be
found, see for example: [3–6]. They’re all incomplete as any model is, but here
particularly as they usually result from mono-disciplinary efforts. They however offer
interesting tools to requirements engineers, and we stand behind the position that
research in sustainable requirements should take the time to investigate these and
translate them to it’s body of knowledge, similarly to what Naumann et al. have
started to do with LCA and the GreenSoft Model.

4. Requirements Engineering and impacts on the software life-
cycle.

4.1. The GreenSoft Model

The first part of the GreenSoft model [2] recalls that software impacts sustainability
all along its lifecycle (Development, Usage, Disposal), at least at three levels:
First-order impacts are direct effects [like…] resource use and pollution from
mining, hardware production, power consumption, and disposal of electronic
equipment waste. Second-order impacts are effects that result indirectly from using
ICT, like energy and resource conservation by process optimization
(dematerialization effects), or resource conservation by substitution of material
products with their immaterial counterparts (substitution effects). Third-order

29

REFSQ 2012 Workshop Proceedings

impacts are long term indirect effects that result from ICT usage, like changing life
styles that promote faster economic growth and, at worst, outweigh the formerly
achieved savings (rebound effects)[2].

�

�
Figure 1: Software Life Cycle and impacts on sustainability [2]

The paper also insists on the fact that second- and third-order effects might well be
the most important, but the harder to grasp. The distinction between software that has
a sustainability-related main purpose and other-purpose software is also highlighted.
It is argued that second- and third-order effects are nearly impossible to grasp in the
latter case.

In this section we use the first part of the GreenSoft Model to briefly see where
Requirements Engineers should take care about sustainability impacts. First we
discuss the phase (development, usage, disposal), then the level of impact (1st, 2nd or
3rd order).

4.2. The Requirements Engineer’s Point of View

RE is obviously primarily concerned by the usage phase of the software. But RE can
also reduce the relative impact of the development and disposal phase: by enabling
software to last longer. This in turn relates to qualities such as reliability, adaptability,
maintainability or context-awareness of software. While specific development
paradigms such as Agile claim their share of the pie in this area [7], it is clear that the
fitness for purpose of the software is the prime quality that will save it from being
thrown in the bin too early. Consequently, a correct requirements engineering work
has a lot to do with software that lasts.

So far as software is concerned, fighting negative 1st-order impacts means designing
"lean" software: software that will consume just what it needs in terms of energy and
hardware. While programming languages and techniques have a predominant impact
here, the requirements work also plays an important role. Keeping the software to
functionalities that are strictly needed is key. Variability management techniques can
also help software engineers to offer more customizable products, so users can select
what they need and only this, removing unused features and associated energy costs.

30

Requirements Engineering for Sustainable Systems (RE4SuSy)

Caring about 2nd- and 3rd-order effects means designing software that induce more
sustainable human behaviours. For any software, the functionalities that we design
may have an impact on sustainability. The Requirements Engineer is the most
appropriate person to integrate sustainability at this time. But this won’t be easy, as
the complexity of software is multiplied by the complexity of sustainability and
human behaviour. For example, e-bay, which fosters reuse of physical goods (positive
impact), may very well foster over-consumption (negative rebound). It’s functionality
to show goods that are close to your home saves on transport impacts, but the one that
shows you results from far away has the reverse effect. E-bay fosters individual
exchanges between people, and provides a sense of community, bringing people
together, which seems to be positive. But is it really so? Social networking tools in
general, a prominent example, have a clear impact on social sustainability of our
society. But how can we measure this impact? How can we assess if it serves a more
or less sustainable society?

In an experience report, Mahaux et al. [8] show that Requirements Engineers can take
the time to assess at least second-order effects of a business-oriented software. They
experimented with very concrete adapted techniques and highlighted how
Requirements Engineers needed to talk to Sustainability specialists in order to master
the complexity of this domain and integrate it into their developments. Just as
Requirements Engineers do with other quality requirements like security [9], they
have to tailor specific techniques and craft the collaboration between Requirements
Engineers and other disciplines specialists to reach the desired quality levels. In [10],
Cabot et al. propose to consider sustainability as a high level goal amongst others, and
using goal-oriented techniques to help decision-making for Requirements Engineers
and stakeholders. They also observe that the first problem is the lack of standard
definitions for sustainability concepts, and suggest Requirements Engineers should
work on defining taxonomies for this concept.

Figure 2: Areas for action for Requirements Engineers

�

31

REFSQ 2012 Workshop Proceedings

5. Conclusion

Requirements Engineers have a role to play in order to make software more
sustainable. It encompasses efforts to build lean and long lasting software, but also
software that helps systems using it to be more sustainable. To do so they first need to
connect with research that will let them understand what is a sustainable society.
Indeed, the complexity of this topic should not be underestimated and, while some
simplifying frameworks are useful and needed, integrating the real complexity of the
sustainability concept will require more work. Researchers from both disciplines
should work collaboratively to develop adequate frameworks for understanding
sustainability in RE and efficient tools to take decisions for building sustainable
software. How these interactions might work, which sustainability experts should be
integrated, which role plays the client who orders the software, in which part of the
RE process is this collaboration in particular useful… are good examples of the
coming research questions in this direction.

6. References

[1] Naumann, Stefan: Sustainability Informatics: A new Subfield of Applied
Informatics? In: Mûller, Andreas; Page, Bernd; Schreiber, Martin (Eds.): EnviroInfo
2008. Environmental Informatics and Industrial Ecology, 22nd International
Conference on Environmental Informatics. Aachen 2008
[2] S. Naumann, M. Dick, E. Kern, and T. Johann, “The GREENSOFT Model: A
reference model for green and sustainable software and its engineering,” Sustainable
Computing: Informatics and Systems, vol. 1, no. 4, pp. 294-304, Dec. 2011.
[3] P. Ekins, S. Simon, L. Deutsch, C. Folke, and R. De Groot, “A framework for the
practical application of the concepts of critical natural capital and strong
sustainability,” Ecological Economics, vol. 44, no. 2-3, pp. 165–185, 2003.
[4]S. López-Ridaura, O. Masera, and M. Astier, “Evaluating the sustainability of
complex socio-environmental systems. The MESMIS framework,” Ecological
indicators, vol. 2, no. 1-2, pp. 135–148, 2002.
[5]E. Ostrom, “A general framework for analyzing sustainability of social-ecological
systems,” Science, vol. 325, no. 5939, p. 419, 2009.
[6]“Reliable Prosperity - A pattern language for sustainability.” [Online]. Available:
http://www.reliableprosperity.net/. [Accessed: 26-Jan-2012].
[7]K. Tate, Sustainable Software Development: An Agile Perspective, 1st ed.
Addison-Wesley Professional, 2005.
[8]M. Mahaux, P. Heymans, and G. Saval, “Discovering Sustainability Requirements:
An Experience Report,” in procs REFSQ'11, pp. 19–33.
[9]D. Firesmith, “Engineering Safety and Security Related Requirements for Software
Intensive Systems,” in ICSE Companion, 2007, p. 169.
[10]J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, and J. N. Mazón,
“Integrating Sustainability in Decision-Making Processes: A Modelling Strategy,” in
31st International Conference on Software Engineering-Companion Volume, 2009.
ICSE-Companion 2009, 2009, pp. 207–210.

32

Requirements Engineering for Sustainable Systems (RE4SuSy)

33

REFSQ 2012 Workshop Proceedings

RE4ES: Support Environmental Sustainability
by Requirements Engineering

Birgit Penzenstadler1, Bill Tomlinson2 and Debra Richardson2

1 Technische Universität München, Germany
penzenst@in.tum.de

2 University of California, Irvine, US
wmt@uci.edu, djr@ics.uci.edu

Abstract. [Motivation:] Environmental sustainability is an important
concern. Information and communication technology (ICT) innovation is
ambivalently positioned with regard to our rapid development and short-
ening innovation cycles. On one hand, information technology facilitates
the (excessive) usage of resources. On the other hand, ICT can also help
to significantly reduce human impact on the environment.
[Problem:] Environmental sustainability is currently not supported ex-
plicitly in requirements engineering (RE). This leads to the problem that
(a) environmental sustainability is not yet given sufficient importance
and (b) it is difficult to manifest in requirements & design and therefore
hard to assess.
[Principal idea:] We need to combine the knowledge of RE, environ-
mental informatics, and further disciplines, to develop an RE approach
that tailors analysis, documentation, and assessment for ICT systems
where environmental sustainability is a first class quality objective.
[Contribution:] This paper is a research preview on an approach to
help requirements engineers handle sustainability as a first class qual-
ity objective. It elaborates on how we plan to refine and validate this
approach in the future.

Keywords: requirements, sustainability, environment, requirements
engineering, quality modeling

1 Introduction & Motivation

The most cited definition of sustainability is to “meet the needs of the present
without compromising the ability of future generations to meet their own needs” [1].
Although our approach primarily aims at environmental sustainability, it must
also be socially (and economically) sustainable in order to have practical signif-
icance [2]. As Mahaux [3] pointed out, we need a toolbox for supporting it in
requirements engineering. We extend the idea of such a toolbox in this research
preview and provide some of our drafts.

Problem: The use of information and communications technology (ICT)
contributes significantly to the usage of our planet’s resources [4]. However, ICT

34

Requirements Engineering for Sustainable Systems (RE4SuSy)

bears a lot of potential for “greening through IT” [5] by making our life more
environmentally sustainable by technological support for our daily life; this is
the context of our research. In contrast, Green IT or “greening of IT” is making
hardware and software of ICT systems more resource-efficient; we do not focus on
this. We must improve the environmental sustainability of humankind to protect
our living space for future generations. Missing is a comprehensive understanding
of how software engineering, and especially requirements engineering (RE), can
help in this endeavor.

Contribution: We are analyzing what and how RE can contribute to the
improvement of the environmental sustainability of ICT. We primarily focus on
the development of ICT systems that have environmental sustainability in their
explicit system vision (and abbreviate these systems with ICT4ES), because we
assume the stakeholders of such systems to be more willing to adapt their devel-
opment processes according to that quality objective. Our goal is to support the
ICT4ES development with an adequate requirements engineering approach that
integrates the knowledge of environmental informatics. This enables software
engineers to handle sustainability as first class quality objective. Our research
questions are:

RQ1: What are the implications for RE of ICT4ES, i.e., when making envi-
ronmental sustainability a first-class quality objective for development?
For ICT4ES as we defined the term, environmental sustainability is an overall
development goal. However, it is not clear how that impacts the requirements
for a system. We seek to understand what is necessary to be taken care of when
developing ICT4ES and how the business processes and business goals differ
from those of traditional products.

RQ2: How can the necessities resulting from ICT4ES be implemented in an
RE approach?
We aim at a toolbox to support the demands resulting from the goal of contribut-
ing to environmental sustainability. First, we analyze which artifacts are neces-
sary to document the newly arising demands and what their concrete contents
are. Then, we investigate which concepts have to be supported and which meth-
ods are required to elaborate these artifacts and how they have to be adapted.

RQ3: How can we assess the impacts of a given software system for environ-
mental sustainability, including both direct and indirect effects, and considering
different groups of stakeholders?
We elaborate metrics to measure environmental sustainability and provide an
answer as to how a system can be proven to fulfill the sustainability requirements
imposed upon it. Furthermore, we investigate an appropriate way to translate
the requirements into acceptance criteria and how these criteria can be incorpo-
rated into an overall quality model.

2 Related Work

Sustainability is beginning to play an important role in software engineering,
with the RE’08 keynote, the ICSE’09 Software Engineering for the Planet spe-

35

REFSQ 2012 Workshop Proceedings

cial session, the CAiSE’10 panel, the WSRCC 2009, 2010, and 2011, and the
conference slogan for ICSE’12. The first author of this paper completed a sys-
tematic literature review on sustainability in software engineering [6].

Amsel et al. [7] discuss ideas on how to support sustainability in SE. Cabot
et al. [8] performed a case study for sustainability as goal for the ICSE organi-
zation with i* models to support decision making for future conference chairs.
Naumann et al. [9] investigate how web pages can be developed with little envi-
ronmental impact, i.e., energy-efficiently, and work on a respective guideline for
web developers. Mahaux et al. [3] performed a case study on a business infor-
mation system for an event management agencyto assess how well some current
RE techniques support modeling of specific sustainability requirements.

These works look at either a specific application domain or a specific devel-
opment technique and adapt them to support sustainability modeling, while this
project aims at an encompassing approach to be evaluated in various domains
of ICT4ES systems. No other work yet proposes solutions for how to support
quality modeling of environmental sustainability for software systems.

3 Approach to RE for ICT4ES

Our approach to RE for ICT4ES is planned in two phases: First, we conduct an
analysis of domains as well as values and goals of the respective stakeholders,
then we design a tailored RE method that supports the gathered specifics for
ICT4ES (see Fig. 1). All activities described in this section are in progress, which
means we have started but not yet completed them.

3.1 Analysis of Domains, Values, and Goals

Environmental sustainability can be supported by software systems in different
ways, e.g., (a) information systems for environmental sciences, including climate
models, earthquake warning, etc., (b) information systems that support green
business processes, for example environment-friendly event management, and (c)
embedded systems that lower our energy consumption. Therefore, we need to
analyze the different types of domains that need support in explicitly addressing
environmental sustainability in their software engineering approaches.

Based on the distinction of domains, we perform structured interviews in
industry and academia with representatives from different domains. The inter-
views are followed by a systematic analysis and an interpretation that draws
conclusions for the design of the envisioned method’s elements.

Starting with the results of the interview analysis, we elaborate a map of
values for environmental sustainability and we detail the goals in a taxonomy,
focusing on the ones that relate to requirements engineering for ICT4ES systems:

Value map for environmental sustainability in SE (RQ1) The value
map shall put the value of sustainability into relation with traditional software
engineering values as in the framework described by Khurum [10]. Her framework

36

Requirements Engineering for Sustainable Systems (RE4SuSy)

relies on data gathered in interviews with practitioners and allows to create
impact evaluation patterns from value maps.

Goal taxonomy for sustainability in SE (RQ1) The goal taxonomy de-
composes and details the aspects of environmental sustainability from the point
of view of software engineering. The input is the value map and for each value
we can deduce supporting goals. Initially, most of these goals are independent of
the system to be developed. Each of the goals is then decomposed hierarchically
until the goals are sufficiently specific to be transformed into requirements.

Fig. 1. Environmental Sustainability in Requirements Engineering.

3.2 Design of a Tailored RE Approach

From the goal taxonomy, we gather requirements for artifacts, methods, and
models for the documentation of sustainability requirements arising by deduction
from the goal taxonomy with respect to a specific ICT4ES system. Based on these
requirements and the knowledge acquired in the earlier phases of the project,
we conduct an analysis and evaluation of different techniques, compare existing
approaches, and develop a tailored RE approach including a quality model that
provides indicators and metrics to assess environmental sustainability.

Sustainability requirements artifact model (RQ2) An artifact model
gives guidance on structure and content to be elaborated when documenting
sustainability requirements and related information like environmental impact,
stakeholders, rationale, etc. Based on our experience [11], we develop an artifact
model for representing sustainability requirements and related information.

37

REFSQ 2012 Workshop Proceedings

Adapted analysis techniques (RQ2) To transition from goals to require-
ments and to adequately document these requirements according to an artifact
model, we elaborate analysis techniques and documentation methods that form
part of an RE approach tailored to ICT4ES. Solutions include adaptations of
creativity techniques, life cycle analysis, environmental impact assessment and
risk analysis techniques as well as handling of environmental information in form
of data, statistics, and models.

Fig. 2. Model-based Quality Assurance (adapted from [12]) & Quality Model Excerpt.

Deduced quality model (RQ3) The quality model is built upon the input
from the value map and the goal taxonomy. A quality model is a model with
the objective to describe, assess and/or predict quality [12]. The activity-based
quality model is elaborated on the basis of concepts proposed in [13]. It includes
criteria for sustainability assessment as well as indicators and metrics to evaluate
and measure a software system’s compliance to the sustainability requirements.
Fig. 2 shows the model-based principle and an excerpt of the quality model draft.

Case studies (RQ1-3) The approach will be evaluated in industrial case
studies, including the value map, the goal taxonomy, the artifact model, the
analysis techniques, and the quality model. The qualitative evaluation will be
implemented as a comparative study. The case study already under way is on
car sharing; another one will be on an irrigation system.

4 Conclusion

In this research preview, we have introduced our ongoing research on a tailored
RE method for ICT systems for environmental sustainability. The analysis phase
investigates the domains and elaborates values and goals with the respective
stakeholders. The design phase provides a tailored artifact model with analysis

38

Requirements Engineering for Sustainable Systems (RE4SuSy)

methods and a deduced quality model. Both will be evaluated in industrial case
studies. We are preparing a guideline for the industry interviews and evaluate
approaches from related disciplines in student seminars as described in [14] for
preliminary studies.

Our contribution will provide software engineers with a toolbox to handle
sustainability as first class quality objective. This enables “greening through
IT” — to produce ICT systems that have positive impact on their surrounding
eco-systems and therefore not only meet the needs of the present (by satisfying
traditional quality objectives) but at the same time preserve the ability of future
generations to meet their own needs (by meeting sustainability quality objec-
tives). As software systems have a profound influence on many different facets
of global civilization, including sustainability in the design of these systems has
the potential to have transformative impacts on the world in which we live.

Acknowledgments: We would like to thank Martin Mahaux for providing
feedback on an earlier version of this paper.

References

1. Brundtland et al.: Our Common Future. In: UN Conference on Environment and
Development. (1987)

2. Sverdrup, H., Svensson, M.G.E.: Defining the concept of sustainability. In: Systems
Approaches and Their Application. Springer (2005) 143–164

3. Mahaux, M., Heymans, P., Saval, G.: Discovering Sustainability Requirements: an
Experience Report. In: 17th REFSQ. (2011)

4. The Climate Group: Smart 2020: Enabling the low carbon economy in the infor-
mation age. Technical report, Global eSustainability Initiative (2008)

5. Tomlinson, B.: Greening through IT. MIT Press Association (2010)
6. Penzenstadler, B., Bauer, V., Calero, C., Franch, X.: Sustainability in Software

Engineering: A Systematic Literature Review. In: 16th Intl. Conf. on Evaluation
and Assessment in Software Engineering. (2012)

7. Amsel, N., Ibrahim, Z., Malik, A., Tomlinson, B.: Toward sustainable software
engineering. In: Proc. of the 33rd Intl. Conf. on Software Engineering. (2011)

8. Cabot et al.: Integrating sustainability in decision-making processes: A modelling
strategy. In: 31st Intl. Conf. on Software Engineering. (2009) 207 –210

9. Naumann, S., Dick, M., Kern, E., Johann, T.: The greensoft model: A reference
model for green and sustainable software and its engineering. Sustainable Com-
puting: Informatics and Systems (2011) –

10. Khurum, M., Gorschek, T.: Software value map - an exhaustive collection of value
aspects for the development of software intensive products (2011)

11. Fernandez, D.M., Lochmann, K., Penzenstadler, B., Wagner, S.: A case study on
the application of an artefact-based requirements engineering approach. In: 15th
Intl. Conf. on Evaluation and Assessment in Software Engineering. (2011)

12. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: Intl. Workshop on Software Quality. (2008)

13. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability. In:
Proc. of Engineering Interactive Systems. (2007)

14. Penzenstadler, B., Fleischmann, A.: Teach sustainability in software engineering?
In: 24th Intl. Conference on Software Engineering Education & Training. (2011)

39

REFSQ 2012 Workshop Proceedings

Writing Requirements for Electromobility and Smart Grids
Systems: Challenges and Opportunities

Jean-Charles Jacquemin1, Martin Mahaux2

1 CERPE, University of Namur, Belgium,

2 PReCISE, University of Namur, Belgium,
{Martin.Mahaux, Jean-Charles.Jacquemin}@fundp.ac.be

Abstract. If they are to deliver their promises without creating the need to
replace the investments we made in the electric grids in the last decades, electric
vehicles, electric grids and their users will have to work together in a smart way.
We present some opportunities and challenges that lie behind this for
requirements engineers, and stand behind the position that this matter should be
part of their research agenda related to sustainability.

1. Introduction

The renewed interest in electromobility was considered some years ago as a simple
paradigm shift in the automotive sector. In this vision, an Internal Combustion Engine
(ICE) vehicle was simply transformed in an Electric Vehicle (EV) by removing the
fossil fuel engine to replace it by an electric motor. After all, that was the situation in
the early years of the XXth century. However the need to reduce both the imported oil
dependency and the emissions from the transportation sector changed this view [1].

In the same time, and for similar reasons, power utilities are also experiencing an
important shift. While they have built their reputation on the reliability and security of
supply through years of incremental innovations, as we move into the XXIst century
it is evident that the distribution systems concepts are approaching their limits. The
need to incorporate an ever-increasing amount of renewable sources - such as wind
and solar - as well as distributed generation is changing the game. Today, electric
distribution systems are still being designed in an hierarchical model similar to what
was the practice in Computer Networks during the 70’s, and it is widely recognized
that they will have to evolve to a “Energy Web” model, bringing some of the
attributes of the Internet to energy distribution. What is needed is more flexibility,
implementing features like “plug-and-play” and “peer-to-peer” operation, which we
have learned to take for granted in the Internet [2].

Distributed generation of renewable energy as well as electromobility appeared as two
problems for the current electric grid. Integrating adequate ICT systems into it,

40

Requirements Engineering for Sustainable Systems (RE4SuSy)

making it a “Smart Grid”, has the potential to transform these two problems in a set of
opportunities. This is the promise that Smart Grids will have to deliver, and this will
demand smart requirements engineers.

2. Which new ICT systems ?

In this section we define briefly where new ICT systems will have to be integrated
into the grid, and what is so smart about it.

2.1. Smart charging.

The Electric Vehicles (EVs) will represent a new kind of load for the electric network,
with a stochastic behaviour in time and space. An overload of the power system (in its
generation, transmission or distribution components) may occur due to the
simultaneous charging of vehicles. Smart Grids may provide more clever solutions
than just oversizing the system; they will enable "smart charging", supplying the
power according to the availabilities of the power system. Consequently, any charging
point will need information about these availabilities [3].

2.2. Storing renewable energies.

On the other side, the storage capacity represented by a float of EVs may, in the
future, become a strong enabler of the introduction of large amounts of renewable
energy into the system. Electric vehicles would be equipped with a plug for
connecting to the Mains and another to connect to the Net. When the vehicle will be
parked at night, at home, it will be connected with both plugs, and it will be connected
again, in the morning, when parked at the office’s garage. While parked, the vehicles
will keep receiving information about the incremental costs of energy. They will store
energy in batteries when it is cheap as there is a lot of wind and solar energy
available, and will sell back the energy when the price is high enough, due to the
scarcity of production. An energy reserve will be kept, in order to enable the users to
continue using the vehicle for the day-to-day needs. Parked in the garage, electric
vehicles will, in the future, help pay themselves by arbitrating on the price of energy.
A simulation of this principle in Belgium can be found in [4]. Again, many
intelligence and information is needed.

Battery swap stations are a particular case because the storage of renewable energies
is centralized in the station which can better accommodates the volatility of renewable
energy supplies [5]. Given the specific situation of the reserve of batteries in the
station, it can also have a significant role as a buffer for load fluctuations in the
network, while removing the EV user anxiety about the battery wear and tear. ICTs
are needed to correctly manage both the energy flows and the EV driver’s usage (both
in terms of energy consumption as financially) of the station.

41

REFSQ 2012 Workshop Proceedings

2.3. Peer-to-peer charging stations

A third domain of prime interest is the necessity for EV users to have access to a
sufficient infrastructure of charge points. Public investment appears too costly, too
slow and inefficient. Given this fact, new initiatives of charge infrastructure sharing
appear as Plugshare [6] in the US, or Plugsurfing [7] in Europe. Both initiative use
ICTs to provide information on smartphone applications or on the Internet about
characteristics, status and location of private and public charging points and offer
GPS guidance as well as payment management services.

2.4. Connectivity in the EV

The last domain, less specific in some aspects to EVs only, is the integration of
advanced connectivity services in the e-mobility. It concerns bringing content into the
car, enabling seamless communications to and from it, and controlling your home
from your car. But also technologies helping the user to drive more safely and more
ecologically, including auto collision avoidance, lane drift assistance, parking, speed
monitoring, hands-free, text-to-voice, driver drowsiness detection, remote diagnosis
by the vehicle manufacturer and more [8]. According to Deloitte’s recent survey [9],
those features will be highly demanded by the next generation of drivers.

2.5. Efficient Electricity Markets

To be efficient, markets must get reliable information at the right time. On the supply
side of the market, they need information about the weather, to foresee renewable
energy generation, as well as information about which energy is stored where. The
detection of incorrect use of storage facilities, to avoid a possibly destabilizing
speculation for the only profit of one actor, will require more information. On the
other hand, patterns of EV drivers’ behavior must be estimated to correctly predict the
demand side of the market. Both market sides thus need constant flows of information
to build correct anticipations of equilibrium situations and price levels. The vision of
an important Electricity producer in Germany can be consulted in [10].

3. Writing Requirements for those new systems.

Redesigning the very complex electricity system will involve a huge requirements
effort. There are many stakeholders involved, and many aspects of our societies are
concerned. While it seems clear that most of the technological components are
available today, writing effective requirements for these systems still look like an
important challenge. Below we list a few of the challenging questions that live around
this system, grouped by the class of stakeholder they belong to. The rich picture
below gives an overview of these actors and their principal relations with the grid. It
is freely inspired from [10], [11].

42

Requirements Engineering for Sustainable Systems (RE4SuSy)

Figure 1: EV-centered smart grid and its main actors

Regulator: How to ensure consumer choices and legal rules are respected in the
context of a liberalized electricity market, in particular the free choice of a given
producer, the free choice of a specified pricing scheme? How to deal with rapidly
evolving laws and regulations as we design our systems around it? How will we deal
with technological monopolies (e.g. charging/swapping stations)? How will we
enforce interoperability?

Driver: How will he manage his EV, minimizing its cost, maximizing its financial
return, and still using it as a reliable vehicle? How to deal with uncertainties (potential
mobility emergencies)? Will people allow to be deprived of their vehicle use if
rewarded enough? Or if no other choice? How to change a pre-assigned (dis)charging
scheme in case of uncertainties, in which timeframe? How to choose a provider?
Where to charge? Is the driver ready to make the daily effort needed to manage this
effectively? Or will he ask someone else to do this?

Power Utility: How to manage this new complexity and still ensure reliable and
green power to people in this dynamic environment, for the lower cost? How will he
be able to monitor the state of the system? Which available (un)conditional storage
capacity may be used on the spot? How to foresee the demand in electricity? How to
ensure revenues in this dynamic world?

Integrators: it is already clear that third party operators like integrators will take a
great importance in providing services to users and perhaps producers and or
distributors; the main question is: how to guarantee impartiality, integrity and
confidentiality on the data and their use?

Markets: When the grid needs to buy energy, where will it take it? From who? At
what price? When many users need energy, who will receive it first? At what price?

43

REFSQ 2012 Workshop Proceedings

What is automatic and what not? How to organize and respect the equality of
treatment of users? Are there various priority levels? Various Quality of Services?
Morally, can we deprive a low priority user who has to drive to the hospital? How to
ensure a proper operation of the market while keeping confidentiality on private data?

Transmitters: While they seem to be less impacted by the EV introduction if the
downside of the market is well organized, some transmitters show interest in the
storage capacities of battery swapping stations, as they intend to use those capacities
to regulate the high and medium voltage power systems. For example, Elia, operating
the Belgian transmission system, takes part in the eMobility project, “Greening
European Transportation Infrastructure for Electric Vehicles” [12]. On the other hand,
the exchange of information with low voltage distributors will represent vital statistics
for a good operation of the whole system and stable electricity system.

Charging point Owner: How to share my CP? To who? Again, who’s first?
Accounting: how to manage electricity bills of both the EV user and the charge point
owner? How to manage payments (included the potential problem of VAT).
Liabilities: who is legally responsible of potential damages to third parties and/or the
charging infrastructure and /or the vehicle while charging, etc.?

4. Conclusion:

Numerous publications stress the fact that smart grids are the natural complement to
electromobility... or the reverse. However, while many technical solutions are now
available to facilitate these complementarities, we have shown that some crucial
questions about the definition of requirements need to be solved to ensure an efficient
and equitable working of those complex systems. A failure to do this would lead to a
non-satisfactory collective solution, potentially counter-balancing any positive impact
expected by the public concerning smart grids and electromobility. Integrating
renewable energies in smart grids to enable a clean mobility needs the technical
solutions to be doubled by careful system design based on state-of-the-art
requirements work. This challenge is not for within ten years, it is in front of us right
now. Given the importance of the results, the size and complexity of this challenge, it
deserves the attention of the best of research and industry to tackle it right now.

44

Requirements Engineering for Sustainable Systems (RE4SuSy)

5. References:

[1] “A European Strategy for Clean and Energy Efficient Vehicles.” European Comission,

2010.
[2] A. Vidigal, “Renewable energies and smartgrids,” in 2011 IEEE EUROCON -

International Conference on Computer as a Tool (EUROCON), 2011, pp. 1-1.
[3] Better Place, “From Cars 1.0 to 2.0: An Economic and Environmental Blueprint for the

Future of Energy and Transportation.” 2008.
[4] Commission de Régulation de l’Electricité et du GAZ (CREG, “ETUDE relative à

l’impact possible de la voiture électrique sur le système électrique belge.” 2010.
[5] H. Roth and B. Gohla-Neudecker, “Analysis of Renewable Energy Power Demand for

Specifically Charging EVs,” 2009.
[6] “PlugShare - Electric Vehicle Charging Network.” [Online]. Available:

http://www.plugshare.com/. [Accessed: 25-Jan-2012].
[7] “Plugsurfing - The EV-Charging Community.” [Online]. Available:

http://fr.plugsurfing.org/. [Accessed: 25-Jan-2012].
[8] “OnStar, Verizon Unveil Second-Generation Research Vehicle to Demonstrate the

Power of the Verizon 4G LTE Network,” MarketWatch.
[9] “Deloitte Survey: Gen Y’s Embrace of Hybrid Vehicles May be Auto Market’s Tipping

Point.” [Online]. Available: http://www.prnewswire.com/news-releases/deloitte-survey-
gen-ys-embrace-of-hybrid-vehicles-may-be-auto-markets-tipping-point-
137666268.html. [Accessed: 27-Jan-2012].

[10] C. Fest, “The energy supplier perspective and the integration in the European Market,”
presented at the Electric Vehicles Conference, Brussels, 2012, p. 27.

[11] “Smart Grid Information Clearinghouse (SGIC).” [Online]. Available:
http://www.sgiclearinghouse.org/ConceptualModel. [Accessed: 25-Jan-2012].

[12] TEN-T Executive Agency, “Greening European Transportation Infrastructure for
Electric Vehicles.” [Online]. Available: http://tentea.ec.europa.eu/en/ten-t_projects/ten-
t_projects_by_country/multi_country/2010-eu-91117-p.htm. [Accessed: 25-Jan-2012].

45

REFSQ 2012 Workshop Proceedings

�

46

3 Requirements Engineering Efficiency Workshop (REEW)

Editors

Norbert Seyff
University of Zurich, Switzerland, seyff@ifi.uzh.ch

Nazim H. Madhavji
University of Western Ontario, Canada, madhavji@gmail.com

Workshop Programme

 Introduction to the 2nd International Requirements Engineering Efficiency
Workshop (REEW 2012) at REFSQ 2012
Norbert Seyff, and Nazim H. Madhavji

48

 Towards the Use of Software Requirement Patterns for Legal Requirements
Axel Hoffmann, Thomas Schulz, Holger Hoffmann, Silke Jandt, Alexander Roßnagel,
and Jan Marco Leimeister

50

 Enhancing Requirements Engineering Efficiency Using Explicit Semantics and
Template-Based Mechanisms Research Preview
Thomas Moser, Wikan Sunindyo, Stefan Farfeleder, and Inah Omoronyia

62

 Focusing on the “Right” Requirements by Considering Information Needs,
Priorities, and Constraints
Sebastian Adam, Norman Riegel, and Anne Gross

68

 GRCM: A Model for Global Requirements Change Management
Waqar Hussain, and Tony Clear

75

 “Measurements of Effectiveness and Efficiency”-Driven Requirements Engineering
and Test Plan Development
Oliver Furtmaier, and Ren-Yi Lo

81

REFSQ 2012 Workshop Proceedings

47

Introduction to the 2nd International Requirements
Engineering Efficiency Workshop (REEW 2012) at

REFSQ 2012

Norbert Seyff1 and Nazim H. Madhavji2

REEW 2012 Co-Chairs

1 University of Zurich, Switzerland
seyff@ifi.uzh.ch

2 University of Western Ontario, Canada
madhavji@gmail.com

Preface

Requirements engineering research has focused on specification quality for a long
time, leading to recommendations of how to engineer high quality requirements speci-
fications. Practitioners, however, do not have the time and resources for developing
theoretically best requirements. Rather, many situations call for short-cuts that allow
investing effort in those concerns that are critical for success, while reducing effort in
other areas where risk is relatively small. The social context, smart collaboration
processes, and novel ways of looking at the interface between stakeholders and the
supplier can be a basis for increasing the yield and quality of requirements, while
reducing effort.

The International Requirements Engineering Efficiency Workshop (REEW 2012)
aims at initiating, facilitating, and nurturing the discussion on efficient approaches to
engineer fitting requirements. Requirements engineering is here seen as a means that
can be simplified, automated, or combined with other practices to achieve successful
systems in an economically efficient manner. REEW 2012 provides a platform to the
community of practitioners and researchers that are interested in efficient and prag-
matic approaches to requirements engineering.

This volume contains papers accepted for presentation at REEW 2012. Three pro-
gram committee (PC) members reviewed each paper, and so we are grateful for the
time and effort all the PC members, listed below, have generously given to REEW
2012. A motivational talk from the trenches of requirements engineering, the presen-
tation and discussion of the 5 accepted papers, the interactive session on research
challenges on requirements efficiency and, of course, the workshop participants char-
acterize the REEW 2012 workshop.

48

Requirements Engineering Efficiency Workshop (REEW)

Program Committee

Steffan Biffl, Technische Universität Wien (Austria)
Oliver Creighton, Siemens AG Corporate Technology (Germany)
Maya Daneva, University of Twente (Netherlands)
Jörg Dörr, Fraunhofer IESE (Germany)
Remo Ferrari, Siemens (USA)
Vicenzo Gervasi, University of Pisa (Italy)
Tony Gorschek, Blekinge Institute of Technology (Sweden)
Paul Grünbacher, Johannes Kepler University (Austria)
Andrea Herrmann, Infoman AG (Germany)
Sven Krause, Zühlke Managements Consultants AG (Switzerland)
Soo Ling Lim, University College London (UK)
Andriy Miranskyy, IBM (Canada)
Anna Perini, Fundazione Bruno Kessler (Italy)
Juha Savolainen, Danfoss Power Electronics A/S (Denmark)
Kurt Schneider, Leibniz University Hannover (Germany)

49

REFSQ 2012 Workshop Proceedings

Towards the Use of Software Requirement Patterns for
Legal Requirements

Axel Hoffmann1, Thomas Schulz2, Holger Hoffmann1, Silke Jandt2, Alexander
Roßnagel2, and Jan Marco Leimeister1

1Information Systems, Kassel University, Germany
{axel.hoffmann, holger.hoffmann, leimeister}@uni-kassel.de

2Public Law particulary Environmental Law and Technology Law, Kassel University, Germany
{t.schulz, s.jandt, a.rossnagel}@uni-kassel.de

Abstract. Laws and regulations play an increasingly important role for re-
quirements engineering and system development. The challenge of interpreting
the law to elicit legal requirements for a novel application calls for legal exper-
tise. In this paper, we investigate if the effort of compiling a list of legal soft-
ware requirements can be reduced by reusing recurring legal requirements.
Therefore, we collected legal requirements that are stable concerning changes
due to their origin in fundamental, higher-ranked laws, and derived software re-
quirement patterns from them. This paper contributes by presenting those soft-
ware requirement patterns consisting of the name, the goal and the pre-defined
requirement template. We argue that under certain circumstances they can be
used as a lightweight approach to specify legal requirements in system devel-
opment projects and hence reduce the need for legal advice.

Keywords: Software Requirement Patterns, Requirements Reuse, Legal Re-
quirements, Laws, Regulations

1 Introduction

The need for system developers to create systems compliant to legislature has been
identified as a challenging and important problem in the requirements engineering
(RE) community [1, 2]. This trend can be seen, for example, in the finance and
healthcare domain, but is also getting more important in other domains of system
development [3]. During the design of information systems in particular, one needs to
consider: the EU Data Protection Directive, the basic rights to informational self-
determination, confidentiality and integrity of information technology systems, the
secrecy of telecommunications, as well as the data and consumer protection law. In-
fringement of any such laws and regulations can lead to high costs, e. g., in the form
of compensations or penalties. These litigation-related costs are rising faster than the
costs covering all the other aspects of software development; they even outgrow the
cost for programming [4]. Only considering laws and regulations and complying with
them enables legitimate information system development [5].

50

Requirements Engineering Efficiency Workshop (REEW)

Developing legally compliant systems is very challenging. Laws and regulations
contain numerous ambiguities, cross-references, and domain specific definitions.
Furthermore, they are frequently amended via new regulations and judicature. Alt-
hough the access to laws and regulations has become easier for system developers in
the age of the Internet [2], the problem of the complexity of applying laws is not re-
solved. Even the identification of relevant laws, and especially the derivation of re-
quirements for the technical system from laws, can hardly be accomplished without
legal expertise. Despite the knowledge of specific legal terms and legal reference
techniques [6], requirements analysts need to recognize the correlation between the
different rules, as well as comprehend the statements of laws relating to technology.
Thus, the challenge is already in the development process of interpreting the law and
deriving system requirements from them.

Researchers are providing engineers with techniques and tools for specifying and
managing software requirements for legally compliant systems [2]. However, these
techniques are very laborious and require experience with laws and legal texts. Only a
few requirements analysts have such legal expertise. Further, many system develop-
ment projects cannot afford a comprehensive legal requirements analysis.

The purpose of our research is to help requirements analysts in specifying legal re-
quirements (LRs). We thus compare the results of LRs specifications and derive soft-
ware requirement patterns (SRPs) [7] that can be (re)used by requirements analysts in
system specification. The LRs specifications we used as source material were derived
by legal experts with KORA, a method used in German legal research. The acronym
KORA stands for “Konkretisierung rechtlicher Anforderungen” (concretization of
LRs) [8], and denotes a procedural method which allows the consideration of LRs in
the design of information technology. This method has been evaluated several times
in legal research [9-14] and derives requirements from the (stable) purpose of law,
rather than handling detailed (changing) regulations. In our study, we have chosen the
legal purpose of personal data protection and have derived six SRPs supporting it.
These SRPs cannot replace LRs analysis in law-critical domains, but they can serve as
a lightweight approach to consider legal purposes in RE.

The remainder of the paper is organized as follows. We first give an overview of
the related work with LRs and SRPs. Next, we briefly describe KORA to show why
the results are appropriate to create reusable SRPs. After a description of the research
design in section 4, we present six SRPs for LRs in section 5. This is followed by the
discussion and conclusion.

2 Related Work

2.1 Specifics of Legal Requirements

Laws are normative provisions that describe what is forbidden or allowed. The way
in which laws are formulated differs fundamentally from the way in which require-
ments are specified [15]. As developers of technical systems usually have no legal
training, specialists need to be incorporated into the development process to analyze

51

REFSQ 2012 Workshop Proceedings

LRs of law [1]. In determining the LRs for a technology, there are the following basic
challenges [1]:

� Choice of laws
� Extraction of relevant obligations and rights from laws
� Abstract and technology neutrality laws
� Dynamics of law
Due to the large number of laws, it is hard to assess which laws, along with their

LRs, need to be considered for the development of a specific information system.
Given today’s global distribution of technical systems, laws of different countries can
be relevant. Additionally, there is a prevailing legislative hierarchy: in Germany, for
example, the constitution, laws at the federal and state level, and regulations. Thus,
the developer is faced with a multitude of laws, some of which are parallel, but which
may also occur secondarily [1, 2]. The legal analysis is complicated by the fact that
not only the (written) laws, but the interpretation by the courts, as well as that in the
literature, must also be taken into account [2]. These are harder to obtain than legisla-
tion, and can sometimes produce a more mixed picture, with decisions regarding spe-
cific cases taken independently. It is precisely challenging for this reason to identify
relevant sources of LRs.

After the relevant LRs have been identified, the next challenge awaits. From the
often very long laws or legal interpretations, relevant rights and obligations need to be
extracted in order to provide LRs. It is common for technical systems that only a
small part of existing legislation is relevant. In addition, dynamic and static references
in the laws make the related interpretation more difficult [2, 16].

Laws set particular legal consequences for an unlimited number of individual cas-
es, and must generally be formulated abstractly. This requires laws to be interpreted
before they can be applied to specific cases. Further, laws often provide a margin of
their interpretation, since names and phrases can be ambiguous [2]. In RE, this is
referred to as a defect of natural language. In legal literature, interpretations can be
found that do not meet the intent of the laws. Additionally, there are often varying
legal views [2]. Laws usually address issues that have occurred in the past, such as
problems that were caused by economic or social changes. For advanced information
systems, the relevant specific details in laws are missing because economic or social
changes have not yet taken place in practice, and legislature has not yet intervened
[6]. Moreover, it is not possible for the legislature to adapt the laws at the same pace
as that which technology development moves. This issue is largely met with abstract
and technology-neutral regulations that target only specific risks. However, it is pos-
sible that regulations are missing for certain legal risks of new technology [1].

Laws are not necessarily time-consistent and changeless; rather, they are subject to
continuous changes [2]. Especially laws and detailed regulations at the lower levels of
hierarchy may change quickly, or are supplemented by additional regulations. Further,
interpretation of laws by judgments is often necessary for the sake of legal security,
but this is a very time consuming process [17]. Thus, for advanced information sys-
tems, concrete points of reference may possibly not yet be available. Compounding
matters, the interpretation of laws can change over time [18], and the law dynamics

52

Requirements Engineering Efficiency Workshop (REEW)

require technical system dynamics. These need to be adjusted throughout the life cy-
cle with respect to changing or new laws [1]. This traceability of requirements raises a
further problem area in RE. If the system has to be adapted, it needs to be documented
which design decision is influenced by which (legal) requirement.

2.2 Prior Work on Legal Requirements

In software engineering, different efforts have been made to deal with LRs. An in-
depth survey of work within the computer science and artificial intelligence domains
in handling legal texts for system development has been carried out by Otto and An-
ton [2] to aid requirements analysts to better specify, monitor, and test information
systems for compliance. This section provides a brief overview of approaches that
help requirements analysts in acquisition and analysis of LRs.

Siena et al. [15] recommend the transition of LRs into stakeholder goals, and that
they should be considered in goal-oriented RE. The described approach corresponds
with the explanations of Ishikawa et al. [17], in which they stress the transition be-
tween legal goals and the stepwise refinement of technical goals. As laws are often
very abstract and general, it is essential for a business organization to derive its own
concrete measures to be taken. However, these legal regulations do not comprise the
goals of RE; rather, they equal the concept definitions that require further refinement.
As described by Ishikawa et al. [17], goal refinement and the refinement of concept
definitions are related to each other. Guarda and Zannone [19] deal with LRs in a
goal-oriented way, as they derive goals directly from law and consider them in the
later requirements analysis. Problems arise when there are no laws or regulations that
can be interpreted and used directly by requirements analysts.

Moreover, there are approaches that translate laws into abstract models [6]. It is
therefore possible to formally examine an application in terms of legal conformity.
However, this translation of requirements into abstract models requires an exact for-
mulation that regulations often lack, as they are in many cases too general and non-
technical [2]. Even if these regulations were to offer a sufficient level of accuracy,
there would still be the complexity of translating abstract legal concepts into require-
ments [15]. Methods for the interpretation of these regulations are not sufficiently
advanced, concentrating more on specific aspects [1]. Thus, only explicit guidelines
allow applying requirements modeling to legal regulations in order to obtain require-
ments for the system. Abstract laws need to be concretized in advance.

Toval et al. [5] have set up a LR catalog regarding security and personal data pro-
tection which serves as a source of documents and interpretations for system devel-
opment teams. The catalog enables requirements analysts to incorporate LRs into
specifications, and thus build compliance into new systems. This approach, however,
still faces the problem of dynamics in legislation and associated changes [2].

2.3 Requirements Reuse and Software Requirement Patterns

Reuse is an established practice in software engineering [20, 21]. In RE, reuse can
help requirements analysts to elicit and document software requirements. SRPs are a

53

REFSQ 2012 Workshop Proceedings

worthwhile approach to reuse requirements [22]. A pattern, in general, describes a
problem which occurs over and over again, and then describes the core of the solution
to that problem, in such a way that it can be used a million times over, without ever
doing it the same way twice [23]. SRPs are used for the software analyses stage.
There are different approaches that differ in scope, notation and application [22].
Recent approaches using SRPs for writing software requirement specifications can be
found in the work of Withall [7] and in the Pattern-based Requirements Elicitation
(PABRE) by Renault, Mendez-Bonilla, Franch, and Quer [24, 25].

A pattern based approach can reduce the effort of acquiring requirements for many
development projects. The possible benefits for requirements analysts are not only the
reduction of time spent to perform the elicitation of the requirements, but also the
improvement of the quality of the requirements book obtained [25]. For this reason,
the reusability of SRPs is the prerequisite for their applicability in practice.

Summarizing, the challenges with LRs analysis evident from: choice of laws, ex-
traction of relevant obligations and rights from laws, abstract and technology neutrali-
ty laws, and dynamics of law demand specific knowledge and considerable effort in
RE. We seize the suggestion of LR reuse [5] and implement it with SRPs [7, 24] to
face the named challenges. With the use of LRs that are stable concerning changes in
detailed regulations due to their origin in fundamental, higher-ranked laws, we reduce
flaws existing in prior LR reuse. In order to generate SRPs, we use specifications
containing LRs homogeneously created with the KORA-Method.

3 KORA – Concretization of Legal Requirements

KORA is a method that has been used in German legal research to derive LRs for
technical systems for nearly 20 years [8-14]. KORA is performed by legal experts and
is not meant to be performed by requirements analysts. Nevertheless, we used the
results of various applications of KORA to identify SRPs for LRs. For ease of under-
standing, we briefly describe the basics of KORA (with the specific terminology) in
the following section.

3.1 Deriving Legal Requirements from Higher-Ranked Laws

For the consideration of legality of systems in computer science, the concept of IT
compliance has been established. To this end, laws are analyzed for containing direct
or indirect LRs - a step which must be considered in the design of technology. Exam-
ples are the Digital Signature Act and the Data Protection Act. From them, legally
binding technical requirements can be obtained directly, as failure of implementation
could result in legal consequences. For this circumstance, the understanding of laws
and other LRs as constraints has emerged.

The minimum requirements for a socially responsible technology design can be
found in the law. These serve both the constitutionally guaranteed free democratic
basic order of the state and the protection of fundamental rights of individual citizens.
Some laws, such as the data protection legislation, contain explicit guidelines for the

54

Requirements Engineering Efficiency Workshop (REEW)

design of data processing information systems. In addition, there are design require-
ments in other laws that regulate only indirect information technology, such as in
accordance with § 312g of the German Civil Code (BGB), regarding entrepreneurs
fulfilling legal duties in the electronic exchange. Therefore, KORA obtains technical
requirements from the purpose of legislation [8, 9]. This is called being legally com-
patible. For the purpose of the secrecy of telecommunications, e. g., a communica-
tions technology where communication is encrypted automatically is more legally
compatible than one that is not automatically encrypted; albeit, the unencrypted tech-
nology is not in any case unlawful. Further, by permanently validating laws and their
purposes, it is not necessary to adapt the systems as a result of legislative changes. At
the time of development, loopholes in detailed rules are also irrelevant [26].

In the development of technical systems - similar to the task of a judge in deter-
mining the facts of the case - developers have to derive specific technical require-
ments from the legal provisions. However, this task has to be carried out before there
is a finished information system. With KORA, the legal concretization is achieved
through a four-step process (Fig. 1) [12].

Fig. 1. Levels of KORA

3.2 Application of KORA in Legal Research

KORA starts from existing constitutional and other legal norms, which can be spe-
cific legal rules. If there are no specific legal provisions applicable to the planned
information system, or if they are subject to short-term changes, KORA starts from
steady higher-ranked legal rules, such as can be found, for example, in the constitu-
tion [9, 12]. On the basis of the purpose and the knowledge of social chances and
risks inherent in the information systems, legal provisions for the planned information
system are developed from the constitutional and other legal norms on the first level.
Hence, the legal provisions apply to the specific project. By focusing on higher-
ranked legal rules, the number of laws to be examined is narrowed down, which sim-
plifies the selection of relevant laws [26]. Furthermore, the differences between the
laws to be considered in different jurisdictions are far greater on the lower-ranking
level. If an information system is used worldwide, it must indispensably be aligned
with general provisions.

Legal Provisions

Legal Criteria

Technical Requirements

Technical Proposals

55

REFSQ 2012 Workshop Proceedings

Legal criteria are identified by analyzing how the legal provisions that have been
developed on the first level can be qualitatively assessed with regard to the infor-
mation system [9]. The criteria describe rather abstract solutions to fulfill the legal
provisions which are in principle legal and non-technical, but certainly can be tech-
nical. Legal criteria can also be developed on the basis of the reasoning given by
judges in legal cases in which the same legal norms are applied [9]. Sometimes the
criteria can already be incorporated as design demands in detailed legislature.

Technical requirements for the design of the technology are abstractions of specific
characteristics of the technology. As the objective of KORA is not only a lawful but
also a legally compatible design of information systems, the technical requirements
for design are requirements which can enhance the legal compatibility of information
systems. A high degree of legal compatibility ensures sustainable lawfulness and
lawfulness in different jurisdictions [26]. If they are adopted in the system develop-
ment, there will still remain considerable scope for the implementation by designers.
For complex systems, further technical concretization should take place afterwards.

On the last level of KORA, technical proposals for the design of the technology are
developed on the basis of the technical requirements [9]. Technical proposals for the
design are performance characteristics which constitute technical functions. For a new
information system, technical characteristics are developed from the technical re-
quirements for the design.

3.3 KORA-Results as Foundation of Software Requirement Patterns

We argue that the results of KORA are suitable to be used as source of SRPs. Due
to their origin in general and stable legal rules, they are most suited for requirement
reuse because it ensures a long life period of the SRPs. Since these rules are often
recognized internationally, the patterns can often also be used for systems that are
intended for an international market. Thereby one should orientate by the strictest
rules if possible. By using German law for privacy purposes, there is a high likelihood
that the information system is legally compliant with other jurisdictions. Further, due
to the focus on legally compatible systems rather than just archiving the minimum
standards of law, it ensures legal compliance even when detailed laws are tightened.

KORA results in requirements on different levels of abstraction. Technical pro-
posals (level 4) provide design recommendations for the technical system. Neverthe-
less, for SRPs, we need solution-free requirements [27] that can be found in the tech-
nical requirements (level 3), which are related to the basic functionality of the infor-
mation system. We extract the technical requirements from the LR specifications and
use them as source requirements to generate SRPs.

4 Research Design

Results from LR specifications, all which were archived with KORA, served as our
source material. Some of the documents were available in public [11-14], while others
were not designated for public use, but were provided for our research.

56

Requirements Engineering Efficiency Workshop (REEW)

Given the documents, we followed the systematic approach of Withall [7] to find
candidates for SRPs, and scanned a sample of seven LR documents. These documents
contained about 30 to 50 LRs. We listed all requirements in a spreadsheet. If a re-
quirement was similar to one we already had on the list, we noted that and moved on.
In the end, we filtered the list for all requirements that were mentioned in more than
one specification. For the identified recurring requirements we formulated SRPs.

5 Results

With today’s technology, it is especially the protection of personal data that often
plays an outstanding role. Accordingly, this paper focuses on SRPs which are particu-
larly relevant for the protection of personal data. These patterns are not exhaustive,
and should serve only as examples to illustrate reusable SRPs.

We have selected natural language to formulate the SRPs. Non-technical experts,
such as legal practitioners, prefer natural language requirements for reading, analysis
and discussion [5]. However, the software requirements specifications we used as a
source were also written in natural language. This is in line with recent approaches
using SRPs for writing software requirements specifications [7, 24].

To illustrate the pattern for LRs, we use the following attributes that are compo-
nents of the recommended structure of a SRP in [22]:

� Goal: The goal has the role of the problem part of a pattern. It has an important
role since it will help to decide whether the pattern is applicable to the software
[25]. This is determined by the planned functionality of the software.

� (Fixed Part) Template: The fixed part template is the core of the solution, stating
that the software has to achieve the goal of the SRP, but not indicating how this
goal can be achieved. Since the fixed part of a form is abstract, it is possible to
provide some extra-information or constraints in the extension part about how to
achieve the goal of the SRP [25].

� Sources: The sources usually comprise the source documents. For our purposes,
we provide the legal provisions from which the requirements were derived and
cite LRs specifications in which the derivation is described.

The example patterns are ascribed to the informational self-determination [11-14].
The right to informational self-determination is a special manifestation of the right of
development and protection of one’s personality, which is established in Art. 2 (1)
read in conjunction with Art. 1 (1) of the German Constitution. This right was
acknowledged in 1983 by the German Federal Constitutional Court [28]. By the right
to informational self-determination, the individual is protected from unlimited dealing
with personal data. Individuals need to decide for themselves when, and within which
limits, personal life issues should be revealed. Today, the right to informational self-
determination has a big impact, especially on the data protection acts.

The following are a few examples of SRPs that are particularly relevant for the
protection of personal data (Table 1).

57

REFSQ 2012 Workshop Proceedings

Table 1. Software Requirement Patterns

1 Confidentiality of the Communication Channels
Goal Ensure protection and confidentiality of personal data during

transmission.
Template The system shall prevent spying out personal data by unauthor-

ized third parties during transmission.
Source [28]; derived in, e.g., [11-14].

2 Divide of Different Personal Data
Goal Limit the usage of personal data to the dedicated purpose.
Template The system shall divide personal data according to different pur-

poses and coherences of use.
Source [28]; derived in, e.g., [11, 12].

3 Control about Storage Medium
Goal Ensure protection and confidentiality of personal data during

storage.
Template The system shall store personal data on a storage medium that is

exclusively controlled by the user.
Source [28]; derived in, e.g., [11-13].

4 Access Control
Goal Ensure protection and confidentiality of personal data during

storage.
Template The system shall ensure that only authorized users gain access to

the service.
Source [28]; derived in, e.g., [11-13].

5 Limitation of Storage Time
Goal Limit the usage of personal data to the dedicated purpose.
Template The system shall delete personal data if they are no longer neces-

sary for system operations.
Source [28]; derived in, e.g., [11, 12].

6 Documentation of Processing with Personal Data
Goal Ensure transparency of personal data usage.
Template The system shall record processing with personal data.
Source [28]; derived in, e.g. [12].

6 Discussion

There are many pitfalls when formulating legal SRPs in order to ensure the ap-
plicability of the result in more than just one system development project; fortunately,
there are also some advantages. Legal SRPs satisfy the need of requirements analysts
in three situations. First, they can help if no detailed laws or regulations are applica-
ble. Second, they are very useful if the requirements analysts do not have any exper-

58

Requirements Engineering Efficiency Workshop (REEW)

tise to work with laws and regulations. Third, they are essential if there are too few
resources to conduct a comprehensive LRs analysis.

To reduce the disadvantages of LRs reuse, we considered specifics in LRs engi-
neering. Usually, a LR catalog requires updates each time the law changes. This is
also true for legal SRPs. But with the selection of requirements worked out with the
KORA-Method, we take advantage of the specifics. The KORA-Method that derives
the requirements from general and stable legal rules ensures a long life period of the
SRPs even without permanent updates. Further, due to the focus on legally compati-
ble systems rather than just archiving the minimum standards of law, it ensures in all
likelihood legal compliance even when detailed laws are tightened.

The traceability between the derived requirements and the sources in law are en-
sured by specifying the legal sources mentioned in the analyzed source specifications.
Further, the full trace from the LRs to the legal sources can be found, if necessary, in
the KORA specifications.

When a pattern is to be used, it first has to be examined whether this pattern is rel-
evant for the design of the information system at all [24]. If, for example, a system
does not gather, process or utilize personal data, a pattern which only purposes the
protection of such data must not be adopted. After identifying all relevant SRPs, the
requirements analyst can assemble the requirements document [24].

The effort for selecting and adapting SRPs is much less than a full requirements
analysis. According to the domain, while the search, extraction and translation of
regulations into requirements took up to several weeks, the selection and adaption of
SRPs can be done in four to five man-days [25].

With LRs, there is always the problem that the legislature can change them at any
time. For patterns which are deduced from LRs, this means that they can be deprived
of their legal basis. This is especially a problem in dealing with relatively detailed
laws, since these can change frequently. Fundamental legal provisions, however, re-
main very stable. Patterns are therefore more stable when they are deduced from more
stable law. For the use of patterns in practice, their stability is very important. For this
reason, we developed patterns which can be ascribed to fundamental, higher-ranked
laws.

For use in practice, it is also important that the patterns are reusable. Only in this
way is the considerable effort to create patterns worth. To ensure the reusability, we
developed patterns by means of technical requirements derived in different projects
for different systems. A further challenge in the development of such patterns is that
they implement legal provisions, but should be used by engineers. This assumes that
the patterns are formulated in a language that can be understood by engineers. For this
reason, our patterns were formulated in technical language. It could thus be ensured
that there were no misunderstandings with the use of patterns due to linguistic differ-
ences between the legal and technical languages.

Not the least of the challenges, the patterns must also be legally correct. Patterns
which should implement legal provision should be evaluated with the cooperation of
jurists; accordingly, jurists were involved in the design and evaluation of each pattern.
Thus, the derived SRPs are conform to today’s detailed laws.

59

REFSQ 2012 Workshop Proceedings

7 Conclusion

The fulfillment of LRs cannot be reached by supplementing individual software
components or modules to a system, as they affect the whole software, compared to a
cross-cutting concern of aspect-oriented programming [17]. LRs resulting from the
laws must therefore be considered in the early phases of RE in order that the legally
compliant technology design can be ensured at early stages of development [15]. Ear-
ly consideration of LRs does not take place in most current development projects. For
example, requirements of informational self-determination which have already been
established by comprehensive data protection legislation are as important as function-
al requirements when designing information systems; however, they are not elicited,
analyzed and taken systematically into account during implementation [19].

SRPs offer a solution for requirements analysts to factor LRs directly into the in-
formation system design. These patterns are generalizable, which leads to reusability.
We created the patterns from LRs that were deduced from stable higher-ranked laws,
resulting in the development of stable patterns. Additionally, we formulated the pat-
terns in a technical language to guarantee that even requirements analysts without a
legal background could work with them. With our patterns, requirements analysts
have a lightweight approach to incorporate LRs into system specifications. It can
improve the productivity of requirements analysts, as they can start from a set of pre-
defined SRPs in a technical language. The quality of the specification can also be
enhanced because the SRPs are evaluated by legal experts.

Our future plan is to integrate the requirement patterns within a SRP catalog. Fur-
ther, we want to parameterize some parts to allow more detailed choices by each ana-
lyst applying the pattern and make it easier to adapt the patterns.

8 References

1. Kiyavitskaya, N., Krausova, A., Zannone, N.: Why Eliciting and Managing Legal
Requirements Is Hard. In: Requirements Engineering and Law, pp. 26-30. (2008)

2. Otto, P.N., Anton, A.I.: Addressing Legal Requirements in Requirements Engineering. In:
15th IEEE International Requirements Engineering Conference, pp. 5-14. (2007)

3. Hoffmann, A., Söllner, M., Fehr, A., Hoffmann, H., Leimeister, J.M.: Towards an Approach
for Developing socio-technical Ubiquitous Computing Applications. In: Sozio-technisches
Systemdesign im Zeitalter des Ubiquitous Computing, Berlin (2011)

4. Cosgrove, J.: Software engineering and the law. Software, IEEE 18, 14-16 (2001)
5. Toval, A., Olmos, A., Piattini, M.: Legal requirements reuse: a critical success factor for

requirements quality and personal data protection. In: 10th IEEE International Requirements
Engineering Conference, pp. 95-103. (2002)

6. Breaux, T.D., Anton, A.I., Boucher, K., Dorfman, M.: Legal Requirements, Compliance and
Practice: An Industry Case Study in Accessibility. In: 16th IEEE International Requirements
Engineering Conference, pp. 43-52. (2008)

7. Withall, S.: Software requirements patterns. Barnes & Noble (2008)
8. Hammer, V., Pordesch, U., Roßnagel, A.: KORA–Eine Methode zur Konkretisierung

rechtlicher Anforderungen zu technischen Gestaltungsvorschlägen für Informations-und
Kommunikationssysteme. Infotech/I+ G 21–24 (1993)

60

Requirements Engineering Efficiency Workshop (REEW)

9. Hammer, V., Pordesch, U., Roßnagel, A.: Betriebliche Telefon- und ISDN-Anlagen
rechtsgemäß gestaltet. Springer, Berlin (1993)

10. Jandt, S.: Vertrauen im Mobile Commerce–Vorschläge für die rechtsverträgliche Gestaltung
von Location Based Services. Baden-Baden (2008)

11. Gitter, R.: Softwareagenten im elektronischen Geschäftsverkehr – Rechtliche Vorgaben und
Gestaltungsvorschläge, Baden-Baden (2007)

12. Steidle, R.: Multimedia-Assistenten im Betrieb – Datenschutzrechtliche Anforderungen,
rechtliche Regelungs- und technische Gestaltungsvorschläge für mobile Agentensysteme,
Wiesbaden (2005)

13. Ranke, J.S.: M-Commerce und seine rechtsadäquate Gestaltung – Vorschläge für
vertrauenswürdige mobile Kommunikationsnetze und -dienste, Baden-Baden (2004)

14. Idecke-Lux, S.: Der Einsatz von multimedialen Dokumenten bei der Genehmigung von
neuen Anlagen nach dem Bundesimmissionsschutz-Gesetz, Baden-Baden (2000)

15. Siena, A., Mylopoulos, J., Perini, A., Susi, A.: From Laws to Requirements. In:
Requirements Engineering and Law, pp. 6-10. (2008)

16. Maxwell, J.C., Antón, A.I., Swire, P.: A Legal Cross-References Taxonomy for Identifying
Conflicting Software Requirements. In: 19th IEEE International Requirement Engineering
Conference. (2011)

17. Ishikawa, F., Inoue, R., Honiden, S.: Modeling, Analyzing and Weaving Legal
Interpretations in Goal-Oriented Requirements Engineering. In: Requirements Engineering
and Law, pp. 39-44. (2009)

18. Massey, A.K., Otto, P.N., Anton, A.I.: Prioritizing Legal Requirements. In: Requirements
Engineering and Law, pp. 27-32. (2009)

19. Guarda, P., Zannone, N.: Towards the development of privacy-aware systems. Information
and Software Technology 51, 337-350 (2009)

20. Berkovich, M., Esch, S., Leimeister, J.M., Krcmar, H.: Requirements engineering for hybrid
products as bundles of hardware, software and service elements – a literature review. 9.
Internationale Tagung Wirtschaftsinformatik (WI 2009), Wien, Österreich (2009)

21. Berkovich, M., Leimeister, J., Krcmar, H.: Requirements Engineering for Product Service
Systems. Business & Information Systems Engineering 3, 369-380 (2011)

22. Franch, X., Palomares, C., Quer, C., Renault, S., De Lazzer, F.: A Metamodel for Software
Requirement Patterns. Requirements Engineering: Foundation for Software Quality 85-90
(2010)

23. Alexander, C.: The timeless way of building. Oxford University Press, USA (1979)
24. Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: PABRE: Pattern-based Requirements

Elicitation. In: Research Challenges in Information Science, 2009. RCIS 2009. Third
International Conference on, pp. 81-92. (2009)

25. Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: A Pattern-based Method for building
Requirements Documents in Call-for-tender Processes. International Journal of Computer
Science and Applications 6, 175 - 202 (2009)

26. Hoffmann, A., Jandt, S., Hoffmann, H., Leimeister, J.M.: Integration rechtlicher
Anforderungen an soziotechnische Systeme in frühe Phasen der Systementwicklung. In:
Mobile und ubiquitäre Informationssysteme, Kaiserslautern (2011)

27. Firesmith, D.G.: Engineering security requirements. Journal of Object Technology 2, 53-68
(2003)

28. BVerfGE (anthology of the judicial decisions of the German Federal Constitutional Court):
65, 1 - court ruling of the 15th December, 1983 - 1 BvR 209/83 et al., (1983)

61

REFSQ 2012 Workshop Proceedings

Enhancing Requirements Engineering Efficiency Using
Explicit Semantics and Template-Based Mechanisms

Research Preview

Thomas Moser1, Wikan Sunindyo1, Stefan Farfeleder2, Inah Omoronyia3

1 Christian Doppler Laboratory CDL-Flex, Vienna University of Technology, Austria
{moser, wikan}@ifs.tuwien.ac.at

2 Institute of Computer Languages, Vienna University of Technology, Austria
stefanf@complang.tuwien.ac.at

3 The Irish Software Engineering Research Centre, University of Limerick, Ireland
inah.omoronyia@lero.ie

Abstract. Ontologies are used to support a range of requirements engineering
(RE) tasks, including the elicitation and analysis of requirements. Major chal-
lenge in RE are the efficient handling of requirements consistency, complete-
ness and maintainability. Typically, RE tasks based on explicit semantics serve
separate purposes and therefore do not address overall RE efficiency. An open
issue is how different ontology-based approaches used in RE can be combined
providing a beneficial synergy of these approaches. In this paper we propose to
integrate two separate approaches building upon requirements templates and
ontologies, one guiding requirements elicitation using Boilerplates, the other
one performing requirement conflict analysis using EBNF. We present an eval-
uation concept to empirically evaluate the synergy benefits and efforts of inte-
gration based on a real-world industry study. Expected results are that this inte-
gration approach can help improving the overall RE efficiency.

Keywords: requirement elicitation, requirements engineering efficiency, con-
flict analysis, requirements categorization, ontology, requirement template.

1 Introduction

Modern software and systems engineering projects are challenging, in part, due to the
high number and complexity of requirements. Further, geographically distributed
project stakeholders usually have diverse backgrounds and sometimes even use dif-
ferent domain terminologies [5]. Therefore, a major goal and challenge of require-
ments engineering (RE) is to achieve consistent requirements descriptions in order to
create a common and agreed understanding on the set of requirements between all
project stakeholders. Semantic technologies seem to be a promising approach to ad-
dress these challenges. Ontologies provide the means for describing the concepts of a
domain and the relationships between these concepts in an explicit and machine-
understandable way allowing automated processing and inference of the available

62

Requirements Engineering Efficiency Workshop (REEW)

information [4]. Several ontology approaches [1, 4] have been used to support re-
quirements engineering, such as for guiding requirements elicitation, for requirements
conflict analysis or for requirements categorization. However, these approaches are
still separately used and have not explored possible synergies of different approaches.

In this paper, we provide a methodology that is capable of integrating different on-
tology-based RE approaches. As proof-of-concept, we integrate two RE methods
using explicit semantics, named ontology-based requirements elicitation and ontolo-
gy-based requirements categorization. The requirements elicitation tool DODT [2, 8]
transforms natural language requirements into a corresponding semiformal linguistic
template representation, also known as boilerplates. In addition, OntRep [6, 7] pro-
vides an automated ontology-based reporting approach for requirements categoriza-
tion, conflict analysis, and tracing based on ontologies. The objective of this research
is to provide the benefits of both approaches during requirements engineering, thus
showing the benefits of increasing efficiency of requirements engineering with explic-
it semantics. Basis for this integration is the transformation between the used two
requirements templates, EBNF and boilerplates. We discuss an evaluation concept for
empirically evaluating the benefits and effort of integrating both approaches using
real-world industrial requirements from the automotive domain. As evaluation criteria
for the RE efficiency, we plan to measure the effort for managing requirement con-
sistency, completeness and maintainability, and therefore additionally put the focus of
our evaluation on the overall visibility and quality improvement in RE.

The remainder of this paper is structured as follows: Section II summarizes related
work on ontologies for RE; Section III presents the solution approach and finally
Section IV presents the evaluation concept and expected results.

2 Related Work

The use of ontologies for addressing requirements elicitation problems was proposed
by Kaiya and Saeki [4]. They were motivated by findings that the lack of domain
knowledge during requirements elicitation resulted in low quality specifications. They
subsequently use domain ontologies as storage for domain knowledge to support re-
quirements elicitation. However, the experiment using a case study of software music
players was too small to argue for sufficient generality of the experimental findings.

Dzung and Ohnishi [1] propose a requirements ontology for requirements elicita-
tion. Their proposed requirements ontology represents (1) a functional hierarchy of a
certain software system, (2) relationships among functional requirements, and (3)
attributes of functional requirements. By using this ontology, they measured the cor-
rectness and completeness of elicited requirements. However, further experimental
evaluation seems advisable to strengthen the external validity of the results.

Omoronyia et al. and Farfeleder et al. [2, 8] proposed the use of ontologies for
guiding requirements elicitation. The aim in these related works was to investigate an
approach for building domain ontologies from existing technical standards.
Omoronyia et al. present an evaluation of their approach and provide insights on the
challenges of semi-automatically building domain ontologies using natural language

63

REFSQ 2012 Workshop Proceedings

texts. This approach helps reducing the effort of building domain ontologies from
scratch. However, further investigation on the possibility of combining this ontology
approach seems advisable to provide added benefits for requirement elicitation.

Moser et al. [6, 7] use semantic technology for automating the detection of com-
plex semantic conflicts between software requirements. In their work, a semantic
approach is used as foundation for automating requirements conflict analysis using
the ontology-based reporting tool OntRep. The evaluation was applied to two real-
world industrial use cases: (a) different types of conflicts, and (b) different levels of
conflict complexity. However, this approach does not use domain ontologies for re-
quirements elicitation. Therefore, synergies with the guidance for domain ontology
building approach presented by Omoronyia et al. [8] could be beneficial.

Yanhui [9] proposes an ontology integration algorithm as follows: (1) identify
alignment between related entities which are semantically correlative, (2) find the
places where ontologies overlap and integrate ontologies, (3) prune integrated ontol-
ogy through detecting ontology redundancy, (4) check the consistency of the inte-
grated ontology. We use this work to design our own ontology integration approach
for integrating two different requirements ontologies.

3 Solution Approach

This section presents the integration methodology as solution approach of the planned
research. The methodology to integrate different ontology-based RE approaches can
be defined as follows: (1) Identify different templates used for requirements elicita-
tion in industrial practice, consider transformation between those templates; (2) ana-
lyze domain ontologies used for requirements representation, identify similarities,
relationships and conflicts among ontologies; (3) provide integration tools based on
analysis results in step 2, integrate different requirements items by using those tools
(see Fig.1 for implementation of this methodology).

Fig. 1. Interlinking between requirements and ontology representation.

The synergy of the used boilerplate and EBNF grammars has its foundations in the
different forms of ontological knowledge representation. The core ontologies used in
boilerplate representation include the domain specific ontology, systems attributes
ontology and the requirements classification ontology. The domain ontology defines
domain specific concepts and the inference rules that describe the axioms, relations

64

Requirements Engineering Efficiency Workshop (REEW)

and attributes of these concepts. The systems attribute ontology generally refers to the
concepts which, when described properly, can enable the specification of the func-
tional and non-functional characteristics of the system. These are the attributes that
are subsequently used to define the structure of a boilerplate grammar.

As shown in Fig.1, we propose to support two major phases of RE, namely Re-
quirements Elicitation and Requirements Analysis. In the elicitation phase, a require-
ment declaration “the <ACC system> shall be able to <determine the speed> of <the
vehicle>” conform with the boilerplate templates <System> shall be able to <Capabil-
ity> of <Object>, where the term <ACC system> is linked to the “System” concept in
the system attribute ontology and also refers to “ACC System” as a concept in the
domain ontology. Similarly, <determine the speed> is linked to the “capability” con-
cept in the systems attribute ontology, while the term speed itself refers to a number
of concepts in the domain ontology, including Driveshaft and Velocity. Finally, the
requirement statement as a whole is linked to the “Functional” concept in the re-
quirements classification ontology. The mapping of a requirement statement to the
systems attribute and domain ontology can be achieved using NLP and different simi-
larity measures as demonstrated in previous work [8].

4 Evaluation Plan and Expected Results

As a use case for the evaluation of RE efficiency, we use DODT and OntRep for re-
quirements elicitation and requirement analysis respectively. We choose these tools
because we have direct access and experience regarding both tools. DODT focuses on
the requirements elicitation, transforming natural language requirements into boiler-
plate representation, while OntRep is used to categorize the requirements and to iden-
tify potential requirement conflicts. Currently, both tools are part of separate RE
processes. We expect that by combining the different approaches of both tools we can
exploit the advantages of both approaches.

Combining different ontology-based mechanisms to efficiently support require-
ments engineering stages can improve the quality of the underlying requirements,
such as requirements consistency, completeness and maintainability. Furthermore, the
usage of explicit semantics for enhancing the presented requirements quality criteria
will most likely provide more efficient means than manual approaches or approaches
focusing on a single usage only, since artifacts (e.g., domain ontologies) can be reused
for a set of approaches. The following paragraphs describe each of these quality crite-
ria and empirical evaluations planned for measuring these quality criteria.

Requirements consistency. To enable us to precisely realize a requirements rea-
soning engine based on domain ontologies we identified two main sources of incon-
sistency. These include inconsistency resulting from specific values given to parame-
ters within the system, and conceptual inconsistency. The focus of this work is on the
latter. Conceptual inconsistency results from the use of conflicting concepts in the
achievement of a specified system goal. Conflicting concepts are concepts that will
generate requirements inconsistency if the phenomenon within which they are de-
scribed can result in inappropriate system behavior. For example, the concepts ‘door

65

REFSQ 2012 Workshop Proceedings

open’ and ‘door close’ for a railway domain are prone to potential conflicts as a train
door cannot be open and closed at the same time. While these are desired properties
of a train there is need for careful tradeoffs to be made such that their co-existence is
within acceptable risk. The goal of this quality criterion is not to claim that require-
ments are inconsistent with each other when they reference concepts that have the
potential to conflict with each other. But rather we aim to highlight a pointer to possi-
ble conflicting and design challenging phenomenon. The requirements analyst or
domain expert can then ensure that such requirements are described within acceptable
risk and hence avoid an unacceptable behavior of the system.

Requirement completeness. We distinguish between two different kinds of com-
pleteness in this research. Internal requirements completeness [3] means that individ-
ual requirements include the entire information necessary to validate and implement
them, e.g., all pre- and post-conditions. On the other hand external requirements com-
pleteness focuses on the completeness of the overall set of requirements, i.e., that no
requirement has been left out and all aspects of the system to be built have been thor-
oughly specified. The first kind of completeness can be established by using template-
based mechanisms for requirements specification. The right kind of patterns ensures
that no vital information is being forgotten. This includes specifying events, states and
modes for functional requirements and measurement quantities and units for quality
requirements. Such patterns can also be easily adapted to additional needs of a do-
main. The domain ontology information addresses external requirements complete-
ness. Usually a domain ontology encompasses more information than what is actually
used in a specific project, i.e., requirements interact with a subset of the entire do-
main, so simply checking whether all domain terms have been used is not feasible.
Instead we need to take the links between ontological concepts into account. If we
have the knowledge that a door requires to include a door sensor in a domain, we
should have requirements about the door sensor once we have door requirements.
Otherwise it is reasonable to assume that door sensor requirements are missing.

Requirement maintainability. In the scope of this work, we define requirement
maintainability as the effort required for performing typical RE maintenance tasks
such as requirement categorization or requirements conflict analysis. In a large soft-
ware project, tasks like requirements categorization, conflict analysis, and tracing
require human effort that often prohibits their use in practice. Therefore, software
projects often end up with unstructured requirements and conflicts that get discovered
late and expensively. In this context, the main research question regarding this re-
quirement quality criterion is: To what extent can a semantic-based approach increase
the effectiveness and efficiency of requirements categorization and conflict analysis
compared to a traditional manual approach? In order to address the research question
we derive the following variables to consider for evaluation: number of requirements
and number of requirement categories used to categorize the requirements. Further,
the total number of true requirements conflicts existing in a list of requirements,
which can be identified by various approaches for conflict detection. Dependent vari-
ables that we want to study by the evaluation are: number of conflicts identified, true
conflicts that have not been identified and the plausibility of requirements classifica-
tion. Besides these parameters we also record the effort for requirements categoriza-

66

Requirements Engineering Efficiency Workshop (REEW)

tion and conflict analysis. This includes preparation effort (e.g., creating the used
ontology), categorization effort, and conflict analysis effort.

Expected result are that the integration approach can help improving the overall RE
efficiency by providing better means for handling typical requirements quality criteria
such as requirements consistency, completeness and maintainability based on re-
quirements templates and explicit semantics.

Acknowledgments

This work has been supported by the Christian Doppler Forschungsgesellschaft and
the BMWFJ, Austria; and in part by Science Foundation Ireland grant
03/CE2/I303_1.

References

1. Dzung, D.V., Ohnishi, A.: Improvement of Quality of Software Requirements
with Requirements Ontology. In: 9th International Conference on Quality
Software (QSIC '09), pp. 284-289. (2009)

2. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., Zojer, H.:
Ontology-Driven Guidance for Requirements Elicitation. In: 8th Extended
Semantic Web Conference, pp. 212-226. (2011)

3. Firesmith, D.: Specifying Good Requirements. Journal of Object Technology 2,
77-87. (2003)

4. Kaiya, H., Saeki, M.: Using Domain Ontology as Domain Knowledge for
Requirements Elicitation. In: 14th IEEE International Conference Requirements
Engineering, pp. 189-198. (2006)

5. Lamsweerde, A.v.: Goal-oriented requirements engineering: from system
objectives to UML models to precise software specifications. Proceedings of the
25th International Conference on Software Engineering, pp. 744-745. IEEE
Computer Society, Portland, Oregon. (2003)

6. Moser, T., Winkler, D., Heindl, M., Biffl, S.: Automating the Detection of
Complex Semantic Conflicts between Software Requirements: An empirical study
on requirements conflict analysis with semantic technology. In: 23rd International
Conf on Software Software Engineering and Konwledge Engineering (SEKE
2011), pp. 729-735. Knowledge Systems Institute Graduate School, USA. (2011)

7. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77, 541-580. (1989)

8. Omoronyia, I., Sindre, G., Stålhane, T., Biffl, S., Moser, T., Sunindyo, W.: A
Domain Ontology Building Process for Guiding Requirements Elicitation. In:
Wieringa, R., Persson, A. (eds.) Requirements Engineering: Foundation for
Software Quality, vol. 6182, pp. 188-202. Springer Berlin / Heidelberg. (2010)

9. Yanhui, L.: An approach to ontologies integration. In: Eighth International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011), pp. 1262-
1266. (2011)

67

REFSQ 2012 Workshop Proceedings

Focusing on the “Right” Requirements by Considering
Information Needs, Priorities, and Constraints

Sebastian Adam, Norman Riegel, Anne Gross

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern
{sebastian.adam, norman.riegel, anne.gross}@iese.fraunhofer.de

Abstract. The trend in industry towards agile and lean approaches requires
“good enough” rather than perfect requirements. One means for achieving this
aim is to streamline requirements processes by focusing on the right
requirements, i.e., on requirements that are economically feasible, most
valuable for customers, and relevant for development engineers when making
design decisions. In this research preview, we present three work-in-progress
approaches that aim at elaborating such right requirements faster.

1 Introduction

In the last two decades, a multitude of requirements engineering (RE) approaches
has emerged. Based on the commonly accepted observation that RE is indispensable
for the success of a software development project, remarkable effort has therefore
been spent on making requirements specifications more complete, more consistent,
more correct, etc.

However, in recent years, the advent and wide acceptance of agile development
approaches in software companies has, among other things, shown that industry is
interested rather in “good enough” than in perfect requirements. In particular,
requirements specifications and RE activities have taken a back seat, as they are no
end in themselves, and often do not sufficiently satisfy the needs of developers
anyway [1].

While these weaknesses do not imply that RE is not necessary for industry,
modern RE approaches - at least in short-lived sectors such as the information
systems domain - must stand out with high efficiency and pragmatism nevertheless.

In order to achieve this goal of higher efficiency, our idea is to improve the
effectiveness of requirements approaches by constructively focusing on the right
requirements. In this context, “right” means that only such requirements that are
actually valuable for satisfying both external stakeholders and developers are
engineered. Furthermore, “constructively” means that the entire requirements process
is guided in a way that as little rework as possible is needed to achieve this set of
“right” requirements.

In order to drive our research in this regard, three practical questions have been
observed in RE practice, which we believe to be essential, but which have not been
solved properly yet:

1. Which requirements are economically feasible?

68

Requirements Engineering Efficiency Workshop (REEW)

2. Which requirements are relevant for enabling early business success?
3. Which requirements are relevant for making development decisions?
In this paper, we present a research preview on how we are currently dealing with

these practical questions. While we address the first question via constraints-aware
elicitation, the second question is addressed via a model-based prioritization
approach, and the third one via view-based specifications. The paper closes with an
outline of how these approaches fit together and which benefit they have for a more
efficient RE approach.

2 Research Preview

2.1 Constraints-aware Elicitation

Problem Elaboration. As a multitude of systems is nowadays built in a reuse-based
manner instead of being developed from scratch [8], experience has shown that it is
unrealistic that each system is actually able to satisfy all stakeholder requirements as
initially stated. Rather, trade-offs between ideal requirements and rapid development
must be made. However, in order to assess the economic feasibility of requirements in
the context of given assets, knowledge about reuse capabilities and constraints is
needed. Unfortunately, requirements engineers typically do not have such knowledge
and thus need to involve development experts. Hence, as their assessment is mostly
done offline, additional and late rework is often needed besides the “normal” rework
that has to be spent due to changing stakeholder wishes anyway. In order to increase
the efficiency of requirements elicitation, requirements engineers must therefore be
enabled to make such assessments on their own directly during an elicitation session.

State of the Art. The most mature approaches for reuse are available in the area of
software product lines (SPL), which have been proven to be the most strategic form of
reuse. However, existing SPL RE approaches assume that the requirements that may
occur during “development with reuse” can be anticipated explicitly during
“development for reuse”. However, as we have shown in our previous state-of-the-art
survey [11], this assumption is often not fulfilled, which is why these approaches are
not sufficient for solving the aforementioned problem. In particular, existing
approaches do not explain how to extract and represent reuse capabilities and
constraints systematically from a given reuse asset base in order to provide
requirements engineers with corresponding knowledge.

Solution Idea. Our solution idea for solving this problem is to use a constraint-
based rather than an enumerative approach for expressing the feasibility of
requirements. Hence, instead of explicit listing of all requirements that are
economically feasible, constraints are defined that restrict valid requirements
declaratively. To make this happen, the idea is to provide a tailoring approach that
prescribes a systematic method for extracting the characteristics of a given reuse asset
base, and for reflecting them in a set of requirements elicitation instructions (see
[11][12]).

Research Objectives. In order to realize this solution idea, the following research
objectives must be achieved.

69

REFSQ 2012 Workshop Proceedings

• Alignment Model. This model explains how RE processes are related with a
given reuse asset base. By knowing these dependencies, we can define which
requirements are economically feasible (see [13]).

• Elicitation Instruction Template. This template provides a generic structure
as well as a set of predefined text blocks for representing best practices and
important knowledge about a reuse asset base to requirements engineers in a
suitable manner (see [14]).

• Tool-supported Tailoring Method. This method provides a clear sequence of
activities to be carried out during “development for reuse” in order to derive
a set of elicitation instructions according to the aforementioned template
from a given reuse asset base.

• Controlled Experiment. This study evaluates whether requirements engineers
using a set of elicitation instructions according to our approach are able to
elicit requirements more effectively than when using state-of-the-art
approaches.

Expected Benefits. The systematic extraction and explicit representation of reuse
capabilities and constraints in an instruction document enables requirements engineers
to be better aware of what is economically feasible and what is not. Hence, they are
able to elicit and negotiate requirements more effectively. In particular, they can
achieve a higher fit between requirements that are economically feasible by using the
reuse assets, and those that are initially stated by the customer. Hence, less effort for
costly re-implementations or late renegotiations is necessary, which leads to higher
overall RE and development efficiency.

2.2 Model-based Prioritization

Problem Elaboration. The purpose of many software development projects is to
build software to better support an enterprise’s business processes in order to optimize
business performance. Typically, such projects are characterized by high complexity –
even in small and medium-sized enterprises, it is not uncommon to have several dozen
business processes that need to be considered for optimization by possible system
designs. In the area of RE and release planning, prioritization is an established strategy
for assessing the best way to spend the available resources [10]. Decision makers in
industry have difficulties in applying state-of-the-art prioritization techniques in such
settings, leading to wasted time and effort spent on numerous (RE) activities of minor
importance. In order to increase the efficiency of requirements elicitation, requirements
engineers must be enabled to handle complexity by eliciting the most valuable
requirements efficiently, i.e., in an optimal order.

State of the Art. In the literature, many prioritization techniques have been
proposed, differing in terms of complexity, calculations, or their input and output, for
example [8]. The selection and application of one special technique strongly depends
on the application domain and the prioritization problem at hand [6]. However, despite
the strengths of the techniques, most are designed to solve general requirements
prioritization problems and thus are multi-purpose methods and do not support the
complex requirements needed in business-process-driven development projects.

Solution Idea. The solution idea for tackling this prioritization problem is to
provide a prioritization framework that takes into account the idiosyncrasies of such
business-process-driven development projects. It shall support the requirements

70

Requirements Engineering Efficiency Workshop (REEW)

engineer by providing him with information about how the particular requirements in
such projects can be assessed (considering their dependencies and idiosyncrasies),
which roles have to be involved in the prioritization process, and how the prioritization
itself has to take place. This means that besides a concrete prioritization technique,
further building blocks are integrated to build a comprehensive framework [7].

Research Objectives. In order to realize this solution idea, the following research
objectives must be achieved.

• Issue Model: This model contains the typical issues (i.e., inherent elements
that are either part of a system or part of the system’s environment) relevant
in business-process-driven RE, their relations among each other, and issue-
specific information relevant for prioritization.

• Value Model: This model consists of the objective (measured) and subjective
(assessed by stakeholders) criteria that are needed to rate requirements
(concerning different issues) appropriately.

• Role Model: This model contains the different roles that are relevant for
prioritizing the requirements concerning different issues.

• Tool-supported Prioritization: This method provides a way to conduct
prioritization by using the information about issues, criteria, and roles
provided in the models.

• Controlled Experiment: This study evaluates whether decision makers using
the prioritization approach according to the solution idea are able to achieve
an equally valuable product with less time and effort, or a more valuable
product with the same time and effort.

Expected Benefits. Through the usage of issue-specific value criteria assessed by
corresponding roles, requirements can be prioritized more appropriately. Requirements
engineers are enabled to focus on the most valuable requirements. Hence, the overall
RE efficiency increases, as time and effort are only spent on the elaboration of
requirements that contribute to business success.

2.3 View-based Specification

Problem Elaboration. When creating requirements specifications (RS) within
software development projects, different information needs have to be addressed.
These information needs are strongly dependent on the particular role and task that
development engineers (as the document consumers) have within the project. For
example, an architect requires detailed information about quality and data
requirements, while a user interface designer is rather interested in information
regarding end user characteristics. However, today’s RE approaches do not explicitly
address these “role-specific” information needs. As a consequence, RS often contain
more or even less information than actually required by a certain role to perform
development tasks. Or the specified information is represented in an inappropriate
form, such as lengthy text descriptions. All these problems negatively influence the
efficient usage of the RS, as for example the analysis of the documents becomes time-
consuming or even frustrating for the document consumers [5]. In the worst case, this
problem could result in development engineers neglecting or ignoring the RS, which in
turn could result in software implementations that fail to meet the requirements
actually documented in the RS.

71

REFSQ 2012 Workshop Proceedings

State of the Art. Existing approaches in the area of requirements specification
provide more general answers to the content and representation of RS and basically
propose “best practice” (e.g., [2] [3]). However, for the efficient development of novel
information systems, these approaches might be too general, whereas specific RE
approaches, e.g., for (self-) adaptive systems such as [4], might be too specific and
neglect important information needs from the developers’ viewpoint.

Solution Idea. To tackle the introduced problem, sound and empirically valid
knowledge about particular information needs from the viewpoint of different
development roles needs to be gained by means of suitable research activities. Such
information needs can be expressed by certain artifact types (such as descriptions of
stakeholders, interactions, quality attributes, or data) that should be specified in an RS
to support engineers in performing their tasks adequately. Furthermore, knowledge
needs to be gained about the respective level of detail and notation in which relevant
artifact types should be specified. Based on this knowledge, suitable tool support can
then be developed that, for instance, makes it possible to provide particular
development engineers with RS that fit their particular demands by generating views
[5] [7].

Research Objectives. In order to realize this solution idea, the following research
objectives must be achieved.

• Information Needs Analysis. This analysis aims at identifying the
information needs of different development roles in modern information
systems development. For this analysis, suitable user studies have to be
designed and conducted, e.g., via surveys, observations, document analysis,
etc.

• Information Needs Reference Model. This model captures the knowledge
about the role-specific information needs gained by the empirical studies
conducted in the previous analysis activity.

• Tool-supported Generation of Views. This research objective aims to
develop suitable tool support for generating views on RS. The vision is that
the tool should support the demands of the various development engineers
regarding their particular information needs. However, it might be difficult
to develop a “one-fits-all” solution. Therefore, the tool might also provide
features to adapt a personal view on an RS to specific (e.g., project-
dependent) information needs.

• Evaluation. This research objective aims to investigate whether the expected
benefits have been achieved or not. Suitable evaluation methods include, for
instance, controlled experiments that compare “traditional” RS with “view-
based” RS regarding variables like time required to create and analyze the
RS or to find important information within the RS [5].

Expected Benefit. Consumers of view-based RS will be provided with all (and
only) relevant information in an RS that supports them in performing their tasks. This
leads to higher efficiency in RE and development, as the analysis of RS becomes faster
(important information can be found easier). Furthermore, the creation of the RS itself
could also benefit as the specification of the requirements could be tailored to the
specific demands of the specification consumers.

72

Requirements Engineering Efficiency Workshop (REEW)

3 Int

Each
isolation.
approach
reuse-bas

In Fig
RE prepa
knowledg
the actua
instructio
process. A
according
elicitation
when imp
constraint
finally re
correspon
this inte
requireme
RE.

We ar
need ad
improvem
cost/bene
project, la

terplay and

of the aforem
 However, th
for more eff

sed [8] and lea
gure 1, the in
aration phase,
ge about the c
al information
ons. During a
At each stage
g to the criter
n effort only
plemented ear
ts and capab

esult from this
nding develop
grated conce
ents is avoided

re aware that t
dditional effo
ments. So far
efit ratio yet. H
arge savings c

d Conclusio

mentioned solu
he idea of ou
ficient RE in
an approaches
terplay betwe
, the requirem
capabilities an
n needs in a
concrete proj
of refinement
ria of the valu
on those requ

rly. Thus, the
ilities into co

s process are t
ment roles bas

ept, the elab
d constructive

the tailoring r
ort that mus
r, we only ha
However, as w
could be achiev

Figure 1. I

on

ution ideas ma
ur research i
the informati
is very high h

een the solutio
ments elicitati
nd constraints
a certain dom
ject, these ins
t, the requirem
ue model. Th
uirements that
elicitation can

onsideration c
then filtered a
sed on their in

boration of n
ely, which fina

required to add
st be balanc
ave first insi

we expect that
ved within a c

Interplay of Sol

ay provide sig
is to integrat
ion systems d
here.
ons is therefor
ion process is
of the reuse a

main is incorp
structions are

ments elicited u
his is done in
t promise the
n be streamlin
continuously.
and represente
nformation nee
non-feasible,
ally increases

dress project o
ced with the
ghts, but no
tailoring will

certain domain

lution Ideas

nificant benef
e them into

domain, as the

re depicted. D
s tailored. In
asset base as w
porated into
then used to

until then are p
order to spen
highest busin

ned, also takin
The requirem

ed appropriate
eds. Hence, by
irrelevant, o

the overall eff

or domain spe
e intended
final evidenc

 not be neede
n.

fits also in
a holistic

e need for

During the
this step,

well about
elicitation
guide the

prioritized
nd further
ness value
ng existing
ments that
ely for the
y applying
or useless
ficiency in

ecifics will
efficiency
ce on the

ed for each

73

REFSQ 2012 Workshop Proceedings

Acknowledgment

The work presented in this paper was performed in the context of the Software
Cluster project EMERGENT (www.software-cluster.org). It was partially funded by
the German Federal Ministry of Education and Research (BMBF) under grant no.
"01IC10S01". The authors assume responsibility for the content.

References

1. Adam, S., Doerr, J., Eisenbarth, M.: Lessons learned from best practice-oriented process
improvement in Requirements Engineering – A glance into current industrial RE
application. In: Proc. of REET, IEEE, Atlanta (2009)

2. Robertson S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley (2006)
3. IEEE Computer Society: Recommended practice for Software Requirements

Specifications. Standard IEEE Std. 830-1998. IEEE, USA (1998)
4. Schmid, K., Eisenbarth, M., Grund, M.: From Requirements Engineering to Knowledge

Engineering: Challenges in Adaptive Systems. In: Proc. of SOCCER'05, Paris (2005)
5. Gross, A.: Perspective-based Specification of Efficiently and Effectively Usable

Requirements Documents. In: Proc. of Doctoral Symposium RE’10, Sydney (2010)
6. Salinesi C., Kornyshova, E., Choosing a Prioritization Method - Case of IS Security

Improvement. In: Forum Proc.of CAiSE, pp.51 – 55. CEUR-WS.org, Luxembourg (2006)
7. Riegel, N., Adam, S., Gross, A.: Addressing requirements engineering challenges in the

context of Emergent Systems. In: Proc. of RESS, pp. 6 – 9. IEEE, Trento (2011)
8. Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving Information Requirements from

Responsibility Models. In: Proc. of CAiSE, pp. 515 – 529. Springer, Amsterdam (2009)
9. Herrmann, A., Daneva, M.: Requirements Prioritization Based on Benefit and Cost

Prediction: An Agenda for Future Research. In: Proc. of RE’08, IEEE, Barcelona (2009)
10. Riegel, N., Adam, S., Uenalan, O.: Integrating Prioritization into Business Process-driven

Requirements Engineering. In: Proc. of REFSQ’10 Workshops, ICB, (2010)
11. Adam, S.: Improving SPL-based Information System Development Through Tailored

Requirements Processes. In: Proc. of Doctoral Symposium RE’10, Sydney (2010)
12. Adam, S., Doerr, J., Ehresmann, M., Wenzel, P.: Incorporating SPL Knowledge into a

Requirements Process for Information Systems – An Architecture-driven Tailoring
Approach. In: Proc. of PLREQ Workshop at REfSQ‘10, pp. 54 – 66. ICB, Essen (2010)

13. Adam, S.: Towards Faster Application Engineering through Better In-formed Elicitation –
A Research Preview. In: Proc. of REFSQ‘11 Workshops, pp. 19 – 24. ICB, Essen (2011)

14. Adam, S.: Providing SPL Knowledge to Requirements Engineers – A Template for
Elicitation Instructions. In: Proc. of REFSQ‘12. Springer, Essen (2012) (to appear)

74

Requirements Engineering Efficiency Workshop (REEW)

GRCM: A Model for Global Requirements
Change Management

Waqar Hussain, Tony Clear

Auckland University of Technology
{waqar.hussain,tclear}@aut.ac.nz

http://www.aut.ac.nz

Abstract. [Context and motivation] In the delivery driven con-
text of contract software production, efficient and effective requirements
change management (RCM) remains a challenge for global software de-
velopment (GSD). [Question/problem] New RCM models need to be
devised for GSD settings, to reduce confusion and improve the efficiency
of managing requirements change and the resulting impacts. [Princi-
pal ideas/results] We present a model drawn from a case study which
evaluated RCM practices in a GSD organization, with sites based in
USA and Pakistan. [Contribution] We extend the observed practices
by developing a theoretically informed process model to improve RCM
efficiency and effectiveness by using a baseline requirements artifact and
tool supported collaboration process.

Keywords: Global Software Development, Multi Site Requirements Change
Management Model, Global Requirements Change Management Model,
Requirements Engineering

1 Introduction

For software companies working in a global context, producing against tightly
constrained software delivery contracts, requirements changemanagement (RCM)
is a critical task. Poorly handled change leads to reduced product and ser-
vice quality, and unsatisfactory resourcing, technical and commercial outcomes.
Recently there have been calls [1] for global software development (GSD) re-
searchers to engage in practical partnerships, adapting existing methods and
tools, rather than developing elegant theoretical models in isolation from prac-
titioners.

This work investigates the RCM process as practiced in a GSD field setting
and compares it with available RCM models (primarily suitable for single site
development) from the literature [2–4, 11, 13]. We propose a global requirements
change management (GRCM) model accommodating multi-site development ex-
tended from the activities, roles and artifacts identified in existing models for
requirements change management [5].

75

REFSQ 2012 Workshop Proceedings

2 Background

2.1 GSD and Requirements Management

GSD poses challenges for managing requirements change because distance (cul-
tural, geographical, temporal and language) aggravates coordination and con-
trol problems, through its negative effects on communication [7]. Requirements
management, one of the most collaboration-intensive activities in software de-
velopment, presents significant difficulties when stakeholders are distributed [6].

Many partial solutions have been offered for the implementation of Require-
ments Engineering (RE) in a global environment but they lack process level
detail [8]. GSD demands robust models, methods and processes that can effi-
ciently and effectively execute GSD work [10]. This research responds to that
need.

2.2 RCM Process Models

The RCM models found in the literature [2–4, 11, 13], are not designed for the
GSD environment. Mapping these models to multi site development is difficult
as they do not describe how the collaborative activity for managing change will
be handled in a globally distributed project, and process level detail is missing.
Yet practitioners are wrestling with these challenges on a daily basis.

A survey [5] was conducted that compared the various activities, roles and
artifacts (ARA) in the existing process models of RCM. It was concluded that
[12] gives the highest level of ARA coverage by a single model, (13 out of the
total 34 elements found in the literature). It was further concluded that there
were no standard models of RCM and lack of detail of the ARA involved reduced
the value of these models for industrial practice.

Our proposed model is developed specifically for the GSD environment and is
more comprehensive than the RCM models proposed in the literature (covering
24 of the 34 elements). It also prescribes the use of collaborative technology
to more efficiently manage RCM activities across distributed sites. We believe
this gives our model strength in reducing requirements management challenges
arising from development projects conducted at a distance.

3 Research Process

We profile here the outcomes of an exploratory case study [14] aiming to enhance
existing RCM models to better support GSD. The characteristics and context of
the setting for this study are mapped below, followed by an elaboration of the
data collected for the study.

3.1 The Case Study Settings

GSD Inc, the selected company for our case study, is a CMMI Level-II certified
small to medium sized company with almost 100 employees. Two projects, SDE

76

Requirements Engineering Efficiency Workshop (REEW)

(Project 1) and DataDive 2.0 (Project 2) were observed during the case study.
SDE is a web application development project for a leading publishing client
organization in the USA. DataDive 2.0 is a centralized web based application
which provides a suite of tools for query and analysis. The GSD Inc Pakistan
office undertakes development projects on a contract basis, to a client supplied
specification, to meet the company’s need for low cost solutions and additional
expertise. The software development life-cycle is thus driven by up-front require-
ments, and negotiated pricing. In practice this results in a pragmatic version of
waterfall by feature development, wherein changes with significant resourcing
impacts result in renegotiation of pricing.

3.2 Data Collection and Analysis Methods

Data was collected for the two projects over a period of 8 months from Au-
gust 2009 to April 2010 at the development site situated in Pakistan. A total of
36 change request forms were collected, 24 for project 1 and 12 for project 2.
Our data analysis process, adapted from [14], investigated the change manage-
ment process, related issues and the rationale for requirements change. Critical
artifacts such as Change Request Forms (CRF), Software Requirements Specifi-
cations (SRS), email messages, status reports etc. were included for qualitative
analysis of data. Semi structured interviews were conducted to support and val-
idate this analysis. Key project members with at least three years experience in
GSD, (the Change Moderator - CM, Quality Assurance Manager, Team Lead
and Analyst) were interviewed.

4 The Proposed Global RCM Model

The company operated with a variable degree of adherence to CMMI prescribed
RCM procedures. Issues identified with the existing RCM process in the study
site were: insufficient impact analysis; limited sharing of information relating to
rationale for changes; and poor recording of requirements change information.
To address the inefficiencies introduced by these practices we propose a Global
Requirements Change Management (GRCM) model for the GSD environment.
The model draws upon frameworks from the literature, incorporating the typical
change activities (namely request, verify, implement, validate and update [11])
of the normative RCM models [2–4] and extending the model presented by [13].

4.1 Description of The GRCM Model

The processmodel presented in Figure 1 uses the terms Role and Site to show the
distribution of the work environment with multiple team members at multiple
sites. In the inset at the top left corner the model shows (Role1-Site1) which
means any Role (such as tester, developer, project manager) at any particular
Site (Pakistan, US, India etc.) played by a stakeholder who can initiate change.
Similarly (Role2-Site2) means any other key stakeholder role at a designated

77

REFSQ 2012 Workshop Proceedings

Fig. 1. Proposed Global Requirements Change Management Model (GRCM)

location (e.g. Site2). The model is extendable to include any number of teams,
sites and stakeholders (RoleN-SiteN). In the proposed model only one client is
shown for simplicity. However the model can equally reflect a number of clients
at multiple locations, for example (ClientN-LocationN), and so on.

4.2 Operation of the GRCM Model

The model takes a baseline requirements document (in this case an SRS, but
could equally include agile artifacts such as user stories) as an initial input into
the process model. The baseline requirements artifact is linked with the coor-
dination database to record and trace changes to the requirements. The SRS
remains visible to all stakeholders across sites, once linked with this collabo-
ration database, whereas specific design artifacts are visible to the local teams

78

Requirements Engineering Efficiency Workshop (REEW)

only. When a change is identified and communicated by any stakeholder from a
given site, it undergoes a process of change formulation, understanding and def-
inition. This is a technology supported collaborative activity among distributed
stakeholders. Upon its acceptance it moves to the formalisation stage, when a
change request form (CRF) is filled out by the change initiator and submitted for
formal review and evaluation by the change control board. The CRF is the key
artifact circulated among the parties when considering a change. The requested
change (whether accepted or rejected), is recorded in the online repository for
future reference. The formally approved change request then enters the negoti-
ation process. If the change is accepted for implementation it is recorded and
scheduled using a tool which makes change data visible to all the stakeholders.
After implementation by the development team it is verified and validated and
then closed. If the change is rejected it goes to a subcommittee of the change
control board for a review and re-evaluation process. The report is sent to the
Change Moderator who then updates the coordination database and makes the
status of the change available to all the stakeholders.

4.3 Application of the Proposed Model

The proposed GRCM model Figure 1 may represent a variety of GSD contexts,
and could be adapted to accommodate new roles identified in specific settings.
The process model, with its support for collaboration through technology and
shared artifacts, contributes to cross-site negotiations, awareness and visibility
of changes. It provides a pragmatic balance between software production and
control, thereby improving the efficiency of the RE process. While devised in a
web application context, it is not limited to any organization or type of software
project. Thus we believe it could be applied in a range of GSD settings.

4.4 Limitations of the Proposed Model

This GRCM model has been synthesized from theory and practice and has had
some initial use within the case study site, to validate its effectiveness. The scope
for testing and optimization of the process model still remains. The model ap-
plies primarily in support of RE activities and contract modification decisions,
and thus has potential limitations in its applicability to the detail of later devel-
opment phases. Yet within this study’s constrained scope of pragmatic waterfall
by feature development it provides a practicable approach. The model also lacks
any prescription of the mediating technology that may be employed. Since many
kinds of collaborative technologies (e.g. repositories, bug reporting tools etc.) can
be used for GSD projects, we believe most organizations will tailor a technology
set to suit their needs.

5 Conclusion and Future Work

Existing requirements change management models have not been specifically de-
veloped for the GSD environment. We report the findings from a case study that

79

REFSQ 2012 Workshop Proceedings

investigated the change management process employed by a GSD organization.
We identified several problems with their existing RCM process. We propose a
resulting global requirements change management (GRCM) model, informed by
our insights from theory and practice. The model incorporates the commonly
adopted change activities (namely request, verify, implement, validate and up-
date [11, 13]) of the normative RCM models [2–4]. The GRCM model augments
these with a collection of activities, roles, and artifacts [13] from the literature.
Currently the observations from its initial use at the case study site are encour-
aging and show signs of its efficiency and effectiveness in this industrial setting.
The model now needs wider application in a variety of GSD project settings for
a full assessment of its workability and scope of application.

References

1. Damian, D.: Requirements Engineering in Global Software Engineering: How far
have we come? [Panel Session]. 6th IEEE International Conference on Global Soft-
ware Engineering, IEEE, Helsinki, Finland (2011)

2. Olsen, N.C.: The software rush hour [software engineering]. Software, IEEE 10
(1993) 29-37

3. Mkrinen, M.: Application management requirements for embedded software. Tech-
nical Research Centre of Finland VTT Publications, Espoo (1996) 286

4. Ince, D.: An introduction to software quality assurance and its implementation.
McGraw-Hill (1994)

5. Ramzan, S., Ikram, N.: Requirement Change Management Process Models: Activi-
ties, Artifacts and Roles. Multitopic Conference. IEEE Islamabad, Pakistan (2006)
219-223

6. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. Proceedings of the 28th international conference on Software engi-
neering. ACM, Shanghai, China (2006) 731-740

7. Carmel, E.,Agarwal, R.: Tactical Approaches for Alleviating Distance in Global
Software Development. Software, IEEE 18 (2001), pp. 2229.

8. Lopez, A., Nicolas, J., Toval, A.: Risks and Safeguards for the Requirements Engi-
neering Process in Global Software Development. 4th IEEE International Confer-
ence on Global Software Engineering, IEEE, Limerick, Ireland (2009)

9. Sangwan, R., Bass, M., Mullick, N., Paulish, D.: Global Software Development
Handbook. Auerbach Publishers, New York, NY (2007)

10. Damian, D., Moitra, D.: Guest Editors’ Introduction: Global Software Develop-
ment: How Far Have We Come? Software, IEEE 23 (2006) 17-19

11. Niazi, M., Hickman, C., Ahmad, R., Ali Babar, M.: A Model for Requirements
Change Management: Implementation of CMMI Level 2 Specific Practice. In: Jedl-
itschka, A., Salo, O. (eds.), Vol. 5089. Springer Berlin / Heidelberg (2008) 143-157

12. Leffingwell, D., Widrig, D.: Managing software requirements, A unified approach.
Addison-Wesley, Boston (2000)

13. Imtiaz, S., Ikram, N., Imtiaz, S.: A processmodel formanaging requirement change.
Proceedings of the Fourth IASTED International Conference on Advances in Com-
puter Science and Technology. ACTA Press, Langkawi, Malaysia (2008)

14. Briand, L.C., Basili, V.R., Kim, R.: A Change Analysis Process to Characterise
Software Maintenance Projects. Presented at International Conference on Software
Maintenance, Victoria, Canada (1994).

80

Requirements Engineering Efficiency Workshop (REEW)

“Measurements of Effectiveness and Efficiency”-Driven
Requirements Engineering and Test Plan Development

Oliver Furtmaier, Ren-Yi Lo

Siemens Corporation, Corporate Research and Technology, Princeton, NJ, USA
oliver.furtmaier@gmx.de
ren-yi.lo@siemens.com

Abstract. [Context & Motivation] In recent years, a lot of attention in re-
quirements engineering (RE) has been given to the early understanding of prob-
lems. This is evident in the works on goal modeling [5], problem frames [2] and
problem oriented software engineering [1], respectively. [Question/problem]
The objective is to detect and resolve conflicts earlier in the development and
create a more consistent rationale for the high level requirements in order to
make early design decisions possible, traceable to the problems and transparent
to all stakeholders. [Principal ideas/results] This should be done by involving
the stakeholders, requirements engineers and testers in the derivation and evalu-
ation of testable, problem-oriented selection criteria from stakeholder problems,
which are referred to as measurements of effectiveness and efficiency. These
criteria set the direction for the development of a solution and measure if any
solution has satisfyingly solved the problems. Hence they drive requirements
engineering as well as testing. The application to a fictitious camera specifica-
tion has bridged crucial gaps in the business rationale. [Contribution] This
process has been further developed from the measurements of effectiveness ap-
proach by Noel Sproles [3, 4] and enhanced towards efficiency. Furthermore,
areas of future investigations have been identified for this research preview.

References

1. Hall, J. G., Rapanotti, L., & Jackson, M. A. (2007). Problem Oriented Software
Engineering: A design-theoretic framework for software engineering. Fifth IEEE
International Conference on Software Engineering and Formal Methods, (pp. 15-
24).

2. Jackson, M. A. (2001). Problem Frames: Analyzing and Structuring Software
Development Problems. London: Pearson Education.

3. Sproles, N. (2000). Coming to Grips with Measures of Effectiveness. Systems
Engineering , 3, 50-58.

4. Sproles, N. (2002). Formulating Measures of Effectiveness. Systems Engineering ,
5, 253-263.

5. van Lamsweerde, A. (2001). Goal-Oriented Requirements Engineering: A Guided
Tour. 5th IEEE International Symposium on Requirements Engineering, (pp. 249-
263). Toronto.

81

REFSQ 2012 Workshop Proceedings

�

82

4 Creativity in Requirements Engineering (CreaRE)

Editors

Maya Daneva
University of Twente, Netherlands, m.daneva@utwente.nl

Joerg Doerr
Fraunhofer Institut IESE, Germany, joerg.doerr@iese.fraunhofer.de

Andrea Herrmann
Infoman AG, Germany, andrea.herrmann@infoman.de

Kurt Schneider
Leibniz Universität Hannover, Germany, kurt.schneider@inf.uni-hannover.de

Workshop Programme

 CreaRE 2012 2nd Workshop on Creativity in Requirements Engineering
Maya Daneva, Joerg Doerr, Andrea Herrmann, and Kurt Schneider

84

 Towards Supporting End-User Creativity with Social Media and Multimedia
Alessia Knauss, Eric Knauss, and Daniela Damian

87

 Design Now! – Elaborating Requirements in Situated Action
Li Zhu, and Thomas Herrmann

93

 ‘Pictionades’: Enhancing Stakeholders’ Awareness about Issues in Requirements
Communication
Deepti Savio, and Anitha P.C.

105

 Requirements Analysis for Multimedia Interactive Informative Systems: A
Metamodelling Approach
Sylviane Levy, and Fernando Gamboa

114

 Research Preview: Using Improvisational Theatre to Invent and Represent
Scenarios for Designing Innovative Systems
Martin Mahaux, and Anne Hoffmann

124

REFSQ 2012 Workshop Proceedings

83

CreaRE 2012
2nd Workshop on Creativity in Requirements

Engineering

Maya Daneva1, Joerg Doerr2, Andrea Herrmann3, Kurt Schneider4

1 University of Twente, Netherlands, m.daneva@utwente.nl
2 Fraunhofer Institut IESE, Germany, Joerg.Doerr@iese.fraunhofer.de

3 Infoman AG, Germany, andrea.herrmann@infoman.de

4 Leibniz Universität Hannover, Germany, kurt.schneider@inf.uni-hannover.de

1 Technical Program

The CreaRE workshop took place as a half-day workshop on the 19th March 2012
in Essen (Germany). The agenda included four paper presentations, a keynote talk and
an improvisation theatre session:
� Daniel Berry (keynote): Are Creativity, HCI, and Emotions Parts of RE? —

Are Requirements Invented or Discovered?
� Alessia Knauss (Olesia Brill), Eric Knauss, Daniela Damian: Towards

Supporting End-User Creativity with Social Media and Multimedia
� Li Zhu, Thomas Herrmann: Design Now! — Elaborating Requirements in

Situated Action
� Deepti Savio, P.C. Anitha: ‘Pictionades’: Enhancing Stakeholders’ Awareness

about Issues in Requirements Communication
� Sylviane Levy, Fernando Gamboa: Requirements Analysis for Multimedia

Interactive Informative Systems: a Metamodelling Approach
� Anne Hoffmann, Martin Mahaux: Research Preview: Using Improvisational

Theatre to Invent and Represent Scenarios for Designing Innovative Systems

2 Introduction

Requirements Engineering (RE) not only demands a systematic approach for
eliciting, operationalizing, and documenting requirements and for solving their
conflicts, but RE also is a creative activity. It demands the stakeholders to create
visions of future software systems and to imagine all their implications. Creativity
enhancing techniques, which have been developed and used in other disciplines and
areas of problem-solving, have the potential to be adapted and adopted in today’s RE,

84

Creativity in Requirements Engineering (CreaRE)

and thus become the foundation for innovative RE processes, addressing both
problem analysis and solution design.

The CreaRE 2012 workshop brought together requirements engineering

professionals from industry and researchers who are interested in discussing the role
of creativity in RE, the array of creativity techniques that can be applied to RE, and
the specific ways to do so. The workshop served as a forum for the exchange of
experiences and research results. It also aimed at raising awareness in the RE
community for the importance of creativity and creativity techniques. Last, the
workshop reached out and made a first step towards linking the RE community to
other communities to which creativity is essential.

We invite readers to review the CreaRE 2012 web site for further information:
http://www.se.uni-hannover.de/events/creare-2012/index.php/Introduction

3 Targeted Audience

CreaRE’s long term vision is to bring together practitioners and researchers from
both the RE community and other related communities, for example, creative design,
psychology, design thinking, to debate on how to leverage creativity approaches for
the purpose of better RE. The workshop organizers are committed to provide
opportunities for practitioners to learn about pragmatic ways for incorporating
creativity techniques into RE processes. To researchers, the workshop provides a
forum to discuss relevant and under-researched RE phenomena where creativity is of
central importance.

4 Program Commitee

We thank our program committee members for their support:

D. Berry (University of Waterloo, Canada
D. Callele (University of Saskatoon, Canada)
A. Hoffmann (Siemens, Germany)
D. Kerkow (Fraunhofer Institut IESE, Germany)
R. Ocker (Penn State University, USA)
K. Schmid, University of Hildesheim, Germany)
I. van de Weer (University of Utrecht, Netherlands)
R. Wieringa (University of Twente, Netherlands)
K. Zachos (City University London, UK)

Each of the submitted papers was reviewed by three program committee members.
The acceptance of any contribution was based on these reviews. Before the workshop,

85

REFSQ 2012 Workshop Proceedings

the authors of accepted papers revised their papers, taking into consideration their
reviewers’ comments. After the workshop, they had the opportunity to take into
account the feedback that they received during the workshop’s discussions.

5 Keynote Presentation: “Are Creativity, HCI, and Emotions Parts
of RE? — Are Requirements Invented or Discovered?”, by Daniel
Berry

This keynote talk offered a variety of perspectives on the question of whether
creativity is part of RE at all. The talk suggested that creativity is indeed part of RE, if
requirements are something that is to be invented. Berry defined creativity as the
generation of innovative, unexpected solutions to complex, non-trivial problems, or to
ill-formed, wicked problems. Dan Berry — and many RE researchers who consider
RE as a socially constructed activity — think that creativity is an integral part of RE.
Examples from Berry’s own research were presented in support of this viewpoint.
Berry also shared personal evidence suggesting that there are different opinions on
whether the topics of inventing requirements, reasoning about emotional
requirements, or using personas in RE is part of RE and whether papers on these
topics should be published in RE outlets or elsewhere. Because whether creativity is a
part of RE is debated in the RE community, Berry invited the RE community to work
towards increasing the awareness of the role that creativity and creativity techniques
can play in RE. He emphasized that workshops on creativity should become part of
any RE event. Furthermore, Berry offered his reflections on the history of research
about creativity in RE. One of the reasons why RE needs creativity is that RE is a
wicked problem for any non-trivial software-intensive system. Any wicked problem
demands abandoning old ideas and finding innovative ways to solve problems.
Creativity can even happen when someone fails to follow conventions. Errors can
lead to new ideas. Creativity not only produces large numbers of requirement ideas
but also provides the methods to cope with this avalanche of ideas. Therefore,
creativity must be fostered instead of controlled or even banned. Berry concluded that
requirements are both invented as well as discovered.

86

Creativity in Requirements Engineering (CreaRE)

Towards Supporting End-User Creativity with Social
Media and Multimedia

Alessia Knauss, Eric Knauss, Daniela Damian

SEGAL, Dept of Computer Science, University of Victoria, Canada
{alessiak,erickn,danielad}@cs.uvic.ca

Abstract. When improving existing software systems, requirements engineers
have to capture stakeholder needs. These needs have to be transformed into
improvements of the system. Creative processes accompany this task.
Especially when improving large systems with many heterogeneous
stakeholders, it is difficult to consider all stakeholders. End-users of the system
can be a valuable source of creativity in discovering requirements, currently not
sufficiently supported in conventional requirements engineering methods.
Today, these end-users are adept in using new techniques (e.g. multimedia, and
social media). This allows using these techniques to establish a community of
practice, facilitate creativity among end-users, and leverage this source of
creativity in requirements engineering. In this paper we describe our vision on
how to support end-users by leveraging novel modes of interaction such as
social media and multimedia. We propose a number of research questions
grounded in related work in the areas of creativity, social media and
multimedia.

Keywords: Multimedia; End-User Participation; User-Centered Requirements
Engineering; Social Media; Seeding

1 Introduction

According to Sawyer and Kotonya [1] systems are often unsatisfactory because
requirements for one group of stakeholders have been stressed at the expense of
others. This problem is even more complex, because modern software systems are
increasingly large-scale systems with many different groups of stakeholders. One of
the main challenges of requirements engineering for these types of systems is to
identify the requirements of all stakeholder groups. In this position paper we discuss,
how to involve a special stakeholder group in requirements engineering – the end-
users – and their creativity in requirements engineering. Plucker [2] defined creativity
as “the interplay between ability and process by which an individual or group
produces an outcome or product that is both novel and useful as defined within some
social context”. Previous research on creativity showed promising support for
requirements engineering (e.g. [3–6]). Yet, it remains to be investigated how to
include the creativity of a representative set of end-users.

Recently, new approaches have been proposed that leverage multimedia [3, 7, 8],
social media [9, 10], and underlying social networks [11, 12] for requirements
engineering. Maalej and Pagano [9] propose a process that enables engineering teams
to systematically gather and exploit user feedback in the software lifecycle. For this,

87

REFSQ 2012 Workshop Proceedings

they integrate social media into software systems and the engineering infrastructure.
They also integrate observations of user interactions while using the software and
proactively collect in situ feedback. UserVoice1 is one example of a social media tool
that allows users to give feedback as support for requirements elicitation. We take the
appearance of such tools as an indicator that a market exists for the kind of topics
described in this position paper. Lim and Finkelstein [11] take these concepts one step
further and offer empirical results. They propose to use StakeRare, a social network
for requirements elicitation and prioritization that leverages snowball effects.
Stakeholders were found to be cooperative (79% responses) in using StakeRare.
Compared to conventional methods (e.g. workshops or interviews), stakeholders
spend less time for requirements elicitation when using this method and preferred the
new method over the conventional method.

The fact that stakeholders prefer social media suggests that this might be a suitable
technique to support end-users’ participation in requirements engineering and an
opportunity for us researchers to leverage it. In this paper we propose to investigate if
social media can support end-user creativity in requirements engineering. More
precisely, we are interested in investigating seeding of social media for requirements
engineering. That is, what kind of input (e.g. multimedia) should be present in social
media to support their users’ creativity?

2 Support for End-User Creativity

Nguyen and Cybulski [13] reflect upon the changing role of users in requirements
elicitation. They argue that users are no longer passive sources of requirements
information. Further, the emergence of new social media (such as YouTube, Wikis
and Blogs) leads to a new type of users, the naïve analysts. These users are
comfortable with creating contents. A success factor for requirements elicitation with
these naïve analysts is the ability to closely collaborate and to be part of a wider
learning community, which is creative and imaginative. Zarvic et al. [14] design the
collection of requirements as a game. This encourages stakeholders to participate and
supports creativity and the identification of hidden requirements. Similar effects
might be visible with end-users who participate in requirements engineering
supported by social media: They might feel less pressure and enjoy the opportunity to
articulate their needs. This would have a positive impact on their creativity and on the
effectiveness of requirements elicitation activities. Maiden et al. [4] give a mapping
between software development processes and stages of an established creativity
method (the CPS method). Based on this mapping, they identify opportunities to
support requirements engineering with creativity. End-user participation is beneficial
during objective finding (i.e. goal modeling), fact finding (i.e. requirements
elicitation), problem finding (i.e. goal modeling), and idea finding (i.e. requirements
refining and decomposition).

When this task is supported by social media, it resembles an evolving knowledge
base. Fischer [15] suggests that such evolving knowledge systems need to be
initialized with relevant content – the seeding. Therefore there are important research
questions that arise in the study of end-user participation in requirements engineering

1 http://uservoice.com/

88

Creativity in Requirements Engineering (CreaRE)

and which relate to how social media, multimedia and seeding can be used to
facilitate end-user creativity. We explore these questions in detail in the remaining
sections.

2.1 Social Media: Infrastructure for End-User Creativity in RE

Shneiderman [23] argues that creativity works best when people interact. In his
creativity framework, he proposes an explicit step where the person to be creative
consults with peers. Social media is well suited for this task, because supporting
interaction between users is their basic idea.

Creativity is a social process [16]. A good group formation can have a high impact
on the groups’ creativity. For requirements engineers it is hard to figure out which
end-user groups should discuss specific requirements. Coordinating all constellations
of discussions (as e.g. in [5]) is significant effort. In contrast, one of the key features
of social media is bringing together people with similar interests. In requirements
engineering this offers a chance for stakeholder groups to emerge based on their
common domain expertise. We propose to use this for supporting creativity in
requirements engineering and integrate support for creativity techniques in social
media (e.g. based on the works of Schmid et al. [17, 18]). Social media can support
the creativity process in spite of spatial distance. Social media supports end-users’
participation without pressure and in an asynchronous manner, thus making it easier
for end-users to get involved. The question is, whether this work is creative:

� Research Question 1: How can social media be leveraged effectively to stimulate
creativity in requirements engineering?

First results reported in related work are promising: Lohmann et al. [10] use a wiki as
social media that allows stakeholders to submit and discuss their requirements. They
use this technique for projects with a defined scope and set of stakeholders. They
report good results from letting stakeholders discuss and rate requirements in the
SoftWiki. Solis and Ali [24] extend their Spatial Hypertext Wiki with creativity
techniques. Singer et al. [19] take such concepts further by investigating, how the
power of innovation in social networks can be leveraged. They argue that this is an
important asset for identifying innovative features for increasing the competitiveness
of systems.

It thus becomes important that research investigates systematically whether social
media has a positive influence on creativity, if such social media tools would bring
together people with conflicting or without common interests and how to add support
for end-user creativity (e.g. seeding of content, for example multimedia).

2.2 Multimedia: Stimulation of Creativity in Requirements Engineering

Maiden et al. [3, 6] report that using multimedia during scenario walkthroughs leads
to better results (i.e. more requirements). Furthermore, multimedia allows to capture
context of a missing requirement and to express how the system should work in this
context [7, 8]. End-users might like to use multimedia, because it makes it easy to
capture context. A typical example is including a screenshot and referring to it when
describing future needs. In this way, multimedia enables end-users to express
themselves at low cost [7]. With the high availability of smartphones with good

89

REFSQ 2012 Workshop Proceedings

cameras and the ability to access content in the internet, mobile devices are becoming
another valuable source for multimedia in situ requirements [20, 21]. Based on these
works, the following research question arises in the context of this paper:

� Research Question 2: How can multimedia be leveraged effectively to stimulate
creativity in requirements engineering?

Research should systematically investigate the impact of multimedia requirements on
creativity. We assume that a multidisciplinary approach including work from
psychology and cognitive science is most promising.

2.3 Seeding: Preparing a Fertile Information Base for Creativity

Fischer [15] argues that complex systems need to evolve. Therefore, he uses the term
knowledge construction in contrast to knowledge acquisition. That is, knowledge is
only built during the lifetime of the system, instead of requiring domain experts to
articulate all requirements a priori. Further, he shows that a solid information base is
beneficial for this knowledge evolution – the seed. This gives users something to react
– a prerequisite for capturing tacit knowledge. Experts can be made aware about their
tacit knowledge when a breakdown occurs while they apply this knowledge. We can
consider the continuous gathering of requirements from end-users in social-media as
knowledge construction, i.e. the construction of knowledge how the system should be.
It remains an open question how to do the seeding for this special type of knowledge
construction and what kind of input is appropriate. Sources for input can be an initial
set of ideas for improvement from the requirements engineers or a number of relevant
bug reports. A promising alternative is using data from in situ feedback tools (e.g. [9,
20, 21]). These tools gather objectives, facts, problems, and ideas during usage of the
system that should be improved or exchanged. The feedback can also include
multimedia content and can be used for seeding at a low cost. Such in situ feedback
can provoke breakdowns with end-users that might have experienced similar
situations. Especially, when enriched with multimedia content, in situ feedback allows
end-users to put themselves in the position of the sender.

If confronted with a blank screen, end-users might be discouraged to invent new
desired objectives or ideas and creativity disappears. Therefore, we assume that good
seeding has high impact on the end-users’ creativity.

� Research Question 3: How can creativity in requirements engineering be
stimulated by seeding of initial content in social media?

Especially when we think about multimedia as a seed for creativity in social media.

3 Proposed Research Method

We propose to investigate these research questions through case study research, as
this allows observing and analyzing phenomena in a realistic context. Supporting end-
user creativity in requirements engineering can be regarded as a process improvement
endeavor. Therefore, the Goal-Question-Metric [22] paradigm could offer a suitable
research method for such case studies.

90

Creativity in Requirements Engineering (CreaRE)

One of the main challenges we currently see is finding a suitable set of metrics to
measure creativity. Based on Plucker and Beghetto [2], we plan on measuring the
novelty and usefulness of contributions based on questionnaires (cf. Section 1).

First we plan to investigate if seeding social media with multimedia content leads
to more (creative) end-user requirements compared to seeding with text-based
content. For this evaluation purpose existing social media (for example StakeRare or
Facebook combined with YouTube) can be used.

4 Conclusion and Outlook

Using multimedia and social media in requirements engineering is a promising and
emerging field. This shows in a number of related works that recently appeared. In
contrast to related work, we focus on creativity of end-users. We propose to use in-
situ feedback as a seed to create a fertile information base that allows creativity.
Especially, when this in-situ feedback contains multimedia content, we expect a
positive effect on creativity. We focus on end-users, because they are the best domain
experts concerning the evolution of software systems. Especially in systems with a
large user base, social media promises to reach a better sample of end-users than
conventional requirements engineering methods. In addition, social media can support
the social nature of creativity, even in the face of spatial distribution.
 In this paper, we highlighted key concepts and motivated a number of research
questions grounded in the current state of research in creativity in requirements
engineering and the impact of seeding multimedia in social media.

5 References

1. Sawyer, P., Kotonya, G.: Software Requirements. Neurosurgery Clinics Of North America.

pp. 179-86. Microsoft Press (2001).
2. Plucker, J.A., Beghetto, R.A.: Why Creativity Is Domain General, Why It Looks Domain

Specific, and Why the Distinction Does Not Matter. Creativity: From Potential to
Realization. 153-167 (2004).

3. Zachos, K., Maiden, N., Tosar, A.: Rich-Media Scenarios for Discovering Requirements.
IEEE Software. 22, 89-97 (2005).

4. Maiden, N., Jones, S., Karlsen, K., Neill, R., Zachos, K., Milne, A.: Requirements
Engineering as Creative Problem Solving: A Research Agenda for Idea Finding. RE'10. pp.
57-66 (2010).

5. Mich, L., Anesi, C., Berry, D.M.: Requirements Engineering and Creativity: An Innovative
Approach Based on a Model of the Pragmatics of Communication. In: Regnell, B.,
Kamsties, E., and Gervasi, V. (eds.) REFSQ’04. pp. 129-144. , Riga, Latvia (2004).

6. Karlsen, I.K., Maiden, N., Kerne, A.: Inventing Requirements with Creativity Support
Tools. In: Glinz, M. and Heymans, P. (eds.) REFSQ’09. pp. 162-174. Springer,
Amsterdam, The Netherlands (2009).

7. Brill, O., Schneider, K., Knauss, E.: Videos vs. Use Cases: Can Videos Capture More
Requirements Under Time Pressure? In: Wieringa, R. and Persson, A. (eds.) REFSQ’10.
pp. 30-44. Springer, Essen, Germany (2010).

8. Creighton, O., Ott, M., Bruegge, B.: Software Cinema-Video-based Requirements
Engineering. RE’06. pp. 106-115. IEEE Computer Society, Minneapolis, Minnesota, USA
(2006).

91

REFSQ 2012 Workshop Proceedings

9. Maalej, W., Pagano, D.: On the Socialness of Software. International Conference on Social
Computing and its Applications. IEEE, Sydney, Australia (2011).

10. Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying Requirements
Engineering: The SoftWiki Approach. I-SEMANTICS’08. pp. 182-185. Graz, Austria
(2008).

11. Lim, S., Finkelstein, A.: StakeRare: Using Social Networks and Collaborative Filtering for
Large-Scale Requirements Elicitation. IEEE Transactions on Software Engineering. pp. 1-
32 (2011).

12. Lim, S.L., Damian, D., Finkelstein, A.: StakeSource2.0: Using Social Networks of
Stakeholders to Identify and Prioritise Requirements. ICSE’11. pp. 1022-1024. ACM Press,
Waikiki, Honolulu (2011).

13. Nguyen, L., Cybulski, J.: Into the Future: Inspiring and Stimulating Users’ Creativity.
Pacific Asia Conference on Information Systems. pp. 123-135. Suzhou, China (2008).

14. Zarvi�, N., Duin, H., Seifert, M., Thoben, K.-D., Bierwolf, R.: Collecting end user
requirements playfully. ICE Conference'09 (2009).

15. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and
Evolving Knowledge in Domain-Oriented Design Environments. Automated Software
Engineering. 5, pp. 447-464 (1998).

16. Fischer, G.: Social creativity: turning barriers into opportunities for collaborative design.
Lifelong Learning. 1, pp. 152-161 (2004).

17. El-sharkawy, S., Schmid, K.: A Heuristic Approach for Supporting Product Innovation in
Requirements Engineering: A Controlled Experiment. In: Berry, D. and Franch, X. (eds.)
REFSQ'11. pp. 78-93. Springer, Essen, Germany (2011).

18. Grube, P.P., Schmid, K.: Selecting Creativity Techniques for Innovative Requirements
Engineering. 3rd International Workshop on Multimedia and Enjoyable Requirements
Engineering (MERE ’08). pp. 32-36. , Barcelona, Catalunya (2008).

19. Singer, L., Seyff, N., Fricker, S.A.: Online social networks as a catalyst for software and IT
innovation. 4th International Workshop on Social Software Engineering. pp. 1-5. ACM,
New York, NY, USA (2011).

20. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre, L.:
Feedback in Context: Supporting the Evolution of IT-Ecosystems. PROFES. pp. 191-205
(2010).

21. Seyff, N., Graf, F., Maiden, N.: End-user requirements blogging with iRequire. ICSE'10.
pp. 285 (2010).

22. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill Publishing Company
(1999).

92

Creativity in Requirements Engineering (CreaRE)

Design Now! – Elaborating Requirements in Situated
Action

Li Zhu, Thomas Herrmann

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano
Via Comelico 39/41 20139 Milano, Italy

zhu@dico.unimi.it
Information and Technology Management, Ruhr-University of Bochum,

Universitaetsstr. 150, 44780 Bochum, Germany
thomas.herrmann@rub.de

Abstract: This paper presents an empirical study on how to elaborate ideas for
requirements with a creativity oriented meta-design environment, MikiWiki
(Zhu 2011). MikiWiki was applied for the collaborative interface design of the
Creativity Barometer (Herrmann et al. 2011) in a co-located meeting context.
Through five collaborative design sessions, we aimed to observe how meta-
design principles support collaborative creativity in practice. This empirical
study is valuable in advancing our understanding of how meta-design fosters
creativity and supports identifying requirements of various stakeholders. Our
findings indicate that a meta-design approach not only enables requirements
engineering at use time but also enhances different levels of creativity: 1)
opportunistic programming as bricologe (Lévi-Strauss 1968) at the meta-design
level, in that meta-designers constantly evolved the MikiWiki design
environment opportunistically to cope with emergent socio-technical issues
without needing to change server-side code; and 2) creativity-in-use at the
design and use level, in that designers and users invent their own ways to use
MikiWiki which are not envisioned by meta-designers. In addition, a more
visual-based approach is appropriate to involve different design communities
and enhance creativity.

Keywords: Design Now, meta-design, collaborative design, creativity,
MikiWiki, requirements

1 Introduction

Future uses and problems cannot be completely anticipated at the software design
time, thus requiring software environments that can be evolved at use time (Bourguin
et al. 2001). The co-evolution of systems and users’ social practices challenges
requirements engineering (RE).

Since it is unrealistic to come up with fully described requirements for yet
unknown problems and a continuously changing context, it is necessary to extend the
RE-process in use time, providing possibilities to accommodate emergent new
requirements.

Meta-design is an approach that strives to create social conditions and design
processes for broad participation in design activities at both design time and use time,
rather than anticipating all design requirements at design time (Fischer et al. 2004).
The characteristics of meta-design are described in detail in (Fischer and Herrmann

93

REFSQ 2012 Workshop Proceedings

2011). With respect to the presented case study and the support of creative RE it is
crucial that:

1) Meta-design with respect to software engineering does not deliver fixed
solutions but a set of tools which enables domain experts and their supporters to
produce iteratively improving applications, in accordance with their evolving needs.

2) Meta-design implies design-in-use: it helps to continuously adapt design
environments. The adaptation can be closely coupled with the usage of the design
environment itself.

3) Meta-design provides a communication space for artifacts based, participatory
design where end users are empowered to be designers.

RE therefore in this paper is twofold. Firstly, using a meta-design system to rapidly
collect and externalize expectations for a software system; these expectations are
mainly visualized (via short notes, symbols, sketches etc.) and can later on be
systematically described with text, tables etc.. Secondly, the socio-technical
challenges (Herrmann 2009) that become obvious during design sessions can be used
to generate software requirements for improving the meta-design environment itself
in the context of use time. However, the relationship between meta-design and RE has
not been intensively explored, though a hint can be found in (Peffers et al. 2007).

The contributions of this paper are the following:
1) It demonstrates that the feasibility of evolving RE through a meta-design

approach. We use “Design Now” to demonstrate our attempt. This refers to meta-
design (Fischer et al. 2004) by emphasizing the immediacy and situatedness of
bringing the usage perspective into design and the design perspective into usage. This
immediacy is a decisive prerequisite for the involvement and creativity of all the
participating stakeholders.

2) Moreover, RE requirements are typically represented via use cases and textually
described. In contrast, the approach we explored does not aim at developing textual
descriptions of requirements, but rather relies on more indirect descriptions via
symbols, sketches, short notes, images and so on. Our findings demonstrate that a
visual-based approach is appropriate and effective in involving different design
communities and in supporting them to create visions of a future software system, as
well as in imagining its central characteristics and implications, in particular some
soft and hard to capture concepts, e.g. emotions.

Section 3 introduces MikiWiki (Zhu 2011), a web-based meta-design environment
with which we conducted our case study consisting of five co-located meeting
sessions. Section 4 explains the methodology of our case study and related
information about design sessions. Section 5 describes some findings from the case
study and a brief discussion is introduced in section 6.

2 Background

Suchman emphasizes situatedness of design action, in that the users’ work and
behavior is contingent on a complex world of objectives, artifacts and other actors
located in space and time (Suchman 1985). Situated action is how actors act in a
situation. It stresses the knowledge ability of actors and how they use commonsense
practices to produce, analyze and make sense of one another’s actions and their
situated context (Doerry 1995).

94

Creativity in Requirements Engineering (CreaRE)

Since the circumstances of users’ actions are never fully anticipated and are
continuously changing, it is necessary to design systems to accommodate the
unforeseeable contingences of situated actions (Suchman 1985).

Situated design (Pfeifer and Rademakers 1991; Müller and Pfeifer 1997) is a
design methodology for software engineering. It capitalizes the notion of the human
as a situated agent. It implies that initial plans of actions are quickly abandoned once
the work of design is underway. The general steps are: 1) Developing a vision of
where you want to go; 2) Analysis of the complete working situation and initialization
of the process; 3) Designing the initial system; 4) Introduction of the system into the
working environment; and 5) Evaluation, taking into account the new working
environment and generating ideas about new system (Müller and Pfeifer 1997).

However, the characteristics of new software do hardly become automatically
apparent by just considering the situation in which it will be needed. A successful
solution needs to be based on creativity. The creative process should take place as
close as possible to the situation of software usage and design decisions. By situated
creativity we mean that new ideas are immediately visualized in the design context so
that they can talk back to their creator and that they are perceivable to other
participants who also can contribute their feedback. To make such immediate
feedback possible, the ideas can only be roughly outlined. They are refined step by
step within a series of trail-and-error actions, which makes it similar to bricolage
(Lévi-Strauss 1968) – that is a preliminary solution is drafted with simple means to
understand whether it is sufficient or not. The character of preliminarity is constitutive
for creativity and bricolage. Further, the focus on visual externalizations implies that
the included users or stakeholders are focused on how the functionality of the system
is mirrored by the user interface of the system.

3 MikiWiki

MikiWiki is chosen as it best serves our purposes in this paper. It provides a concrete
meta-design environment, in which requirements or expectations can be visualized as
well as textualized. It directly supports creative and collaborative drafting of the
features of a software system.

MikiWiki is a structured programmable wiki to concretize the main meta-design
characteristics. Beyond providing tools for text content production as in traditional
wikis, MikiWiki allows all the stakeholders to collaborate in practice design and to
continuously evolve the whole wiki system.

For the purpose of this paper, we only briefly introduce one distinctive feature of
MikiWiki, “nuggets”. In analogy with Lego construction kits, providing simple parts
with which the user can create complex artifacts (Resnick et al. 2005), nuggets are the
building blocks of MikiWiki shared between stakeholders.

To support collaborative RE, nuggets address collaborative design from different
aspects. As an example, fig. 1 demonstrates participants designing a mobile interface
with various nuggets, e.g. PostIt note, different toolbox, canvas and trash nuggets, etc.
Participants can utilize the sync-imagenote nugget to create moodboards, or the
doodle nugget to visualize abstract concepts (fig. 2). This not only helps them to
express emotional attitudes but also to understand their expectations towards the
system. A decisive characteristic of nuggets is that the representation of ideas, which
can be created with different nuggets, can be interrelated to each other. Therefore

95

REFSQ 2012 Workshop Proceedings

nuggets can intertwine the various perspectives of different stakeholders and they can
bridge various phases of the design.

With these building blocks, users can use, mix and modify them, adding new
behaviors or creating new ones. Nuggets therefore become a medium to facilitate
introducing emergent requirements for MikiWiki at use time as well as collecting and
prototyping requirements of design projects.

4 Case study

The design study was done in the Information and Technology Management Group at
the Ruhr-University of Bochum, Germany. Meta-designers, designers and users were
tasked to collaboratively redesign for a mobile version of a micro-survey tool, the
Creativity Barometer [2], as part of an ongoing design project.

4.1 Context of the Case Study and Goals
The purpose of the Creativity Barometer is to conduct surveys to continuously
understand and assess the climate of a company’s creativity support. The Creativity
Barometer allows companies to periodically repeat surveys and get instant feedback
continuously. After a pre-specified time period (e.g. eight months), the company can
summarize the feedback and plan interventions to improve the creativity climate.
Since continuous surveying can disturb the employees the idea is to support them to
give their answers as “en passant” as possible, e.g. with smart phones. The Creativity
Barometer was first evaluated with a desktop-based web browser. It was successfully
used in 4 companies where for instance 99 employees produced 2673 answers in
September 2011. Therefore, transferring the desktop-oriented browser-version to
smart phones appeared reasonable. However, the main concern we had was that users
would stick with their impression of the already known solution when being asked for
their expectations towards a smart phone version. Therefore we have considered the
context of this design task as a reasonable case where creativity techniques should be
applied. This design task – drafting the appropriate characteristics of the smart phone
solution – has been chosen to evaluate meta-design in MikiWiki and to understand
how far MikiWiki could contribute to the discovery of requirements.

Our design study questions are:
1) Whether MikiWiki supports a transition between design for use and design in

use, thus making RE an iterative and ongoing process;
2) Whether lightweight tools provided by MikiWiki allow participants with

different background and different roles to articulate and share their ideas and
needs;

3) How far MikiWiki supports creativity of meta-designers, designers and users.

4.2 Environment Setting
The design study was conducted in the modlab in the Department of Information and
Technology Management, Institute of Applied Work Science at the University of
Bochum. Five collaborative design sessions supported by MikiWiki were conducted
and evaluated in a co-located collaboration context. A large, high-resolution
interactive wall (4,80m x 1,20m; 4320x1050 pixels) seamlessly integrates three rear
projection boards (see fig. 1). The touch screen displayed the MikiWiki mockup
environment. Data can be entered and manipulated directly on the screen or via iPads

96

Creativity in Requirements Engineering (CreaRE)

which are connected via WLAN (Herrmann 2010). Most important, the developing
content of the large screen as well as the participants’ activities can be completely
recorded with the modlab. The recordings support a systematical analysis for
detecting requirements afterwards while the session itself can be run in an associative,
non-linear mode.

4.3 Methodology
This design study follows an action research approach (Avison et al. 1999). Action
research is a framework for information system research that includes the expansion
of social scientific knowledge as well as practical problem solving in social settings
(Avison et al. 1999). Action research is an iterative process involving researchers and
participants collaborating together on a particular cycle of activities, e.g. problem
diagnosis, reflective learning. The essence of action research is a two-stage process
(Blum 1955): 1) The diagnostic stage, in which the usage of the environment by the
participants was observed and they were afterwards interviewed; and 2) the
therapeutic stage, in which videos and the recorded interviews were partially
inspected, based on which an adaption of the MikiWiki environment was conducted.
The whole design study included five sessions. For each session the environment had
to be prepared.

Semi-structured Interviews
After each design session, the meta-designer conducts follow-up semi structured
interviews, for a total of 13 interviews. Open-ended questions are used as we intend to
find out what participants think about MikiWiki, their design experiences and the
rationale behind their opinions.

The interview questions focus on how MikiWiki supports participants in
externalizing and articulating their ideas and requirements on an individual level and
on a collaborative level, different design experiences and difficulties of using
MikiWiki.

Observation
Each design session lasted approximately 60 minutes. It was divided into three
phases: 1) Brainstorming and Collaborative Writing (15 min.). Participants were
required to brainstorm RE for Creativity Barometer, to agree on design goals, basic
design elements, constrains, and to create a mood-board to illustrate design "look and
feel". 2) Sketching Ideas and Collaborative Drawing (15 min). Participants were
required to sketch the structure, navigation and components of the application. 3)
Designing with the Mockup Environment (30m). Participants could use the mockup
environment to finalize the Creativity Barometer interfaces. Although design sessions
do not directly relate to each other, certain nuggets were modified in between to
support a better RE process.

During the design session, we took observation driven notes with respect to the
following aspects: the transition between meta-design, design and use; participants’
situated appropriation; how participants with different backgrounds and roles
externalize and exchange their ideas, shape their design space to better organize their
design flow and design tasks on hand; and how participants brainstorm, articulate and
finalize their creative ideas via different nuggets at different design phases.

97

REFSQ 2012 Workshop Proceedings

4.4 Participants
The design sessions involved 11 participants - four female and seven male, aged from
25 to 55 years, and comprising MA, MSc and PhD students as well as associate
professors. All the participants are involved in innovation, creativity, CSCW and
CSCL related research and are willing to try out new technology. They have some
experiences with interdisciplinary creative collaborations, and are used to using
different groupware systems. Some participants are directly involved in creativity
related research. Every participant has an interdisciplinary focus, ranging from
computer science, and usability engineering to sociology, history and political
science.

We conducted 5 design sessions, which were organized to involve different types
of participants. Group 1 and 2 consisted of two designers; group 3 consisted of two
users and two designers from the previous design session; group 4 was made purely
of two users; group 5 consisted of one designer and two users. Two participants from
group 1 also attended the third design session in order to validate the previous
experience and evaluate improvements of the mockup design environment; therefore
they were interviewed twice. The second round of interviews focused on whether they
noticed any changes to the design environment from their first design session. [In01]
to [In13] are used in the text to identify the 13 interviews.

5 Findings: Creativity by Situated Design

In this section, we describe how participants used and appropriated MikiWiki to come
up with requirements for Creativity Barometer and how meta-designers improved
MikiWiki based on situated RE from participants to further support participants’ RE
and creative in use.

5.1 Support for externalization and communication
A palette of tools: providing simple, small and rich tools is important to support
multi-modal creation and different cognitive styles. Small tools allow all the
stakeholders to play with, tinker and try use cases and the differentiation of cases in
accordance with certain conditions. It is necessary to support participants in exploring
solutions and “what-if” scenarios, trying out assumptions to assess requirements
continuously. Using MikiWiki with an interactive large screen can be characterized as
a ‘sandbox for tinkering’. [In02] “It was quite nice that we didn�t jump from tool to
tool to do different things. Brainstorming feels more like a different tool, starting from
a simple GUI. We just tried what we had there to achieve what we wanted. It really
felt like a little playground, when you had quite many possibilities. [...]”

98

Creativity in Requirements Engineering (CreaRE)

Fig. 1 Borrowing design elements from the brainstorming stage

For example, fig. 1 illustrates that two participants used various nuggets to
externalize and document expectations. Referring to these externalizations on the
large screen allowed participants to explain their requirements and design rationale,
and to intertwine their perspectives and to foster synergy building. The visualized
ideas were a continuous basis for refining and extending them from moment to
moment. They also “borrowed” their brainstorming phase robots and statistical image
notes directly into the final output phase. Nuggets were therefore used to intertwine
their diverse perspectives as well as bridge different design phases.

Notably, two participants had different opinions about the “look and feel” of the
barometer interface at the beginning, and they rapidly prototyped a robotic style and a
“Hello Kitty” pink style (see fig. 1) to express different emotions and feeling with
respect to the characteristics of the system to be designed – and consequently to the
requirements it will have to meet.

Visualization and externalization: participants used different nuggets to
externalize ideas, making tacit knowledge imaginable to others. Fig. 2 demonstrates
that one designer used the sync-imagenote nugget to search for images from the web
to illustrate his flower menu concept and further used the doodle nugget to sketch his
flower gesture concept. Nuggets provided lightweight means to support each
participant to effectively exchange creative ideas and enrich the RE process. “The
good thing with MikiWiki is that it is very wide. It supports different ways of
expressing ideas, you have seen that one wants to paint, one wants to use icons, one
wants to use photographs, one wants to use text….[In08].” On the other hand
MikiWiki facilitates participants to reach a common understanding by interacting
with the concretely available tools and materials. “It´s fast, you can directly show
your ideas, and improve them. If I have an idea and I show it to another person, and
then the other person could say, “Yeah this is good or bad, but I think it would be
better...” - the other person can directly show me what he means [In09].”

99

REFSQ 2012 Workshop Proceedings

Fig. 2 Visualizing and externalizing concepts

Continuous restructuring: participants were able to act on their design space and
redefine it around their specific situated context. As nuggets are independent and
loosely coupled, participants could recombine them to better communicate their ideas,
to create either a structured design space [In01] or a more chaotic space on the canvas
[In03].

One of the designers commented, “MikiWiki combines everything with everything
[In13].” The interesting point here is that participants were constantly unwittingly
creating their design space to better externalize, articulate and share how they
envision the requirements for the final system. The flexibility of combining nuggets
supported their situated appropriation and adaptation. Nuggets were small and generic
enough to be used individually or together to restructure design space [In04] and to
achieve new behaviors [In04, In11]. These possibilities of continuous restructuring
are a suitable basis for a continuous refinement of visualizations, which can be
employed to systematically derive requirements.

Generating stimuli: when participants saw a wide range of icons made available
by the meta-designer, they were inspired even if the icons were not directly related to
their actual ideas. These items acted as a stimulus for coming up with creative
requirements. For instance, in design session 3, designers noticed the audio icon, and
subsequently had the idea that audio input should be available. They further reasoned
on using voice volume to indicate the rating scale. Introducing unexpected and
accidental inputs can foster creativity and simulate unconventional thinking. In
particular, the sync-imagenote nugget offers easy manipulation with randomness.
“What was quite good was imagenotes [the sync-imagenote nugget]. You could
search images from Google. It was mainly for creativity, I think it was cool. […] It�s
fun to use. It was more to open your mind... [In03]”

5.2 Moment to Moment
In this meta-design study in the context of co-located meetings, collaborative design
becomes an activity within which composition and execution as well as thinking and
doing converge in time. It is tightly coupled with certain socio-technical conditions.
“With MikiWiki, you are making ideas, and trying them out at once and in real
time…. In one hour, we developed four scenarios, which were quite good ideas
[In01].” Problems are solved without scripted plans or preconceptions of how to do it.
Therefore, the decision-making process is situational, i.e. testing and creating on the
spot. The temporal dimension is compressed from several connected time spans to

100

Creativity in Requirements Engineering (CreaRE)

moment-to-moment simultaneous decisions. With respect to RE, the setting neither
focuses on the systematical scripts of creativity techniques as for example described
by Briggs de Vreede (2006) nor does it follow certain phase models as proposed by
Osborn and Parnes (Kaufman and Sternberg 2006) or Shneiderman (2002). By
contrast, we employed electronic media to support a much more spontaneous
approach since the continuous recording of the results of the session allows the
participants a succeeding analysis of their contribution on which further elaboration
can be based.

5.3 Meta-design
The distinctive aspect of MikiWiki is that different design activities occur within the
same system. After each design cycle, in accordance with the participants’ feedback
and meta-designers’ observation, nuggets were modified or created for the next
design session to better support the design process. Consequently, the nuggets were
constantly a subject of design and reframed by designers’ and users’ creative
contributions. In contrast to the traditional software development approach, designing
everything in advance, “Design Now” for the meta-designers is rather designing in the
moment.

For the meta-designer, MikiWiki strongly supported a situated design-in-use option
making it both possible and easy to adapt the design space from session to session. It
is through this cyclical process that meta-designers, designers and users enhanced
their mutual understanding by interacting with the concretely available tools and
materials. As an example, meta-designers were able to improve the doodle nugget
step by step e.g. modifying menu, adding auto-saving function, providing animation
function etc. and through the whole design sessions. This also implies the progression
of design sessions and the co-evolution that took place between users, designers and
meta-designers.

The co-located approach is particularly valuable in investigating meta-design
support, since emergent social-technical issues, user behavior patterns and dynamic
interactions between various roles can be directly observed, influenced and recorded.
Thus, meta-designers are able to get instant feedback and improve MikiWiki at the
meta-design level in an agile manner.

The transition between meta-design, design and use in MikiWiki supports iterative
design processes, thus converging towards requirements in contrast to the traditional
systematic description of functional specifications.

5.4 Different levels of creativity
During the session we observed different levels of creativity due to different
activities, namely opportunistic programming as bricolage at the meta-design level,
and creativity-in-use at the design and the use level, in that designers and users invent
their own ways to use MikiWiki which are not envisioned by meta-designers.
Nevertheless different levels of creativity strongly influence one another:
� Meta-designer level: constructing design environments is an activity occurring at

the meta-design level, in that the meta-designer sets up the initial design
environment for the design session and constantly evolves it opportunistically to
cope with emergent socio-technical issues without needing to change server-side
code.

101

REFSQ 2012 Workshop Proceedings

� Designer level: design environments support creativity at the design and the use
level, in that participants continuously adapt nuggets to form a design space in
order to perform their design tasks at that moment.

� User level: participants use the tailored design space at different phases to
externalize their thoughts on the fly.

A meta-design approach is essential in supporting different levels of creativity:
creative design from meta-designers and creative appropriation from designers and
users triggering further creative meta-design.

The validity of the empirical findings has certain limitations as meta-design
normally covers a much longer period than was observable within the case study.
Ongoing empirical investigation of a meta-design approach enabled RE should be
conducted. In addition, how these requirements of Creativity Barometer derived from
design sessions are implemented and adapted in practice needs further study.

6 Conclusions

We did not follow a scripted approach of applying creativity techniques for
requirements development in systematically facilitated group meetings as it is pursued
– for instance - by (Jones and Maiden 2005). Instead “Design Now” summarizes our
approach from the following aspects:

1) The RE process is situational, testing and creating on the spot. Decisions are
made collectively, contingent and from moment to moment.

2) With respect to the meta-design system, new requirements emerge in time and
are tightly coupled with current conditions, which have little to do with scripted plans
and can be collected and implemented at use time.

3) Situatedness is a decisive characteristic of situations where people “dive” into
interplay between drafting of a software solution on the one hand and understanding
their needs and expectations on the other hand. Creativity can benefit from
situatedness, as underpinned by Csikszentmihalyi’s concept of flow
(Csikszentmihalyi 1996). Within a flow, people’s attention is completely attached to
their goals e.g. by intensively interacting with artifacts.

Additionally, this study suggests that a more visual-based approach can be further
explored in supporting creative and collaborative drafting of the features of a software
system. As demonstrated in MikiWiki, stakeholders with a kind of artifacts which do
not focus on textual descriptions of requirements but can immediately ‘talk back’
(Fischer et al. 2004) from the very beginning. Creating visual descriptions of what
users do expect or need, can be considered as a starting point for deriving
specifications for functional requirements for instance by identifying:
� The use cases and the differentiation of cases in accordance with certain

conditions, e.g. whether user wants to be pushed by the barometer or not;
� The larger context of the application as addressed in contextual design (Beyer

and Holtzblatt 1998), e. g. to avoid interruptive conversations;
� The experiences which might be supported by using the tool to be developed,

e.g. by the style of the interface;
� The metaphors on which the user interface should be based;
� The dialogue steps which are presented by different states (i.e. mock ups) of

the interface;

102

Creativity in Requirements Engineering (CreaRE)

� The data which has to be included in a data model;
� The control flow by which the dialogue with the system should be guided.
It turns out that the closely intertwined cycles of meta-design and design with

MikiWiki do not aim at completed products or well-defined requirements. In contrast,
the design outcome always makes sense with respect to a concrete situation and
mainly helps to increase the stakeholders’ understanding of what they expect
according to their different perspectives. This is driven by the participants following
their inclinations and design instincts in the pursuit of their evolving goals as it is
typical for wicked problems or for the relevance of mess finding (Osborn and Parnes;
cf. Kaufman and Sternberg 2006).

References

Avison DE, Lau F, Myers MD, Nielsen PA (1999) Action research. Commun ACM 42 (1):94-
97. doi:10.1145/291469.291479

Beyer H, Holtzblatt K (1998) Contextual Design: Defining Customer-Centered Systems.
Morgan Kaufmann Publishers, San Francisco

Blum F (1955) Action research—a scientific approach? Philosophy of Science 22 (1):1-7
Bourguin G, Derycke A, Tarby J-C (2001) Beyond the interfaces, Co-evolution inside

Interactive Systems: A proposal founded on the Activity Theory. Paper presented at
the IHM-HCI 2001, Toulouse.

Csikszentmihalyi M (1996) Creativity — Flow and the Psychology of Discovery and Invention.
HarperCollins Publishers, New York, NY

De Vreede G-J, Kolfschoten GL, Briggs RO (2006) ThinkLets: a collaboration engineering
pattern language. Int J Comput Appl Technol 25 (2/3):140-154.

Doerry E (1995) Evaluating distributed environments based on communicative efficacy. Paper
presented at the Conference companion on Human factors in computing systems,
Denver, Colorado, United States

Fischer G, Giaccardi E, Ye Y, Sutcliffe AG, Mehandjiev N (2004) Meta-Design: A Manifesto
for End-User Development. Communications of the ACM 47 (9):33-37

Fischer G, Herrmann T (2011) Sociotechnical Systems: A Meta-Design Perspective.
International Journal for Sociotechnology and Knowledge Development 3 (1):1-33

Herrmann, T. (2009), Systems Design with the Socio-Technical Walkthrough, in Brian
Whitworth & Aldo de Moor, eds ., 'Handbook of Research on Socio-Technical
Design and Social Networking Systems', IGI GLobal, Hershey, PA, USA, pp. 336-
351.

Herrmann T (2010) Support of Collaborative Creativity for co-located Meetings. In: Randall
DS, Pascal (ed) From CSCW to Web 2.0: European Developments in Collaborative
Design. Computer Supported Cooperative Work. Springer London, London, pp 65-
95.

Herrmann T, Carell A, Nierhoff J (2011) Creativity barometer: an approach for continuing
micro surveys to explore the dynamics of organization's creativity climates. Paper
presented at the Proceedings of the 8th ACM conference on Creativity and cognition,
Atlanta, Georgia, USA

Jones S, Maiden NAM (2005) RESCUE: An Integrated Method for Specifying Requirements
for Complex Sociotechnical Systems. In: Maté J SA (ed) Requirements Engineering
for Sociotechnical Systems. Idea Group Publishing, London, pp 245–265

Kaufman J, Sternberg R (2006) The International Handbook of Creativity. Cambridge
University Press, New York

Lévi-Strauss C (1968) The Savage Mind. University Of Chicago Press

103

REFSQ 2012 Workshop Proceedings

Müller M, Pfeifer R (1997) Developing effective computer systems supporting knowledge-
intensive work: situated design in a large paper mill. In: Cases on information
technology management in modern organizations. IGI Publishing, pp 225-249

Peffers K, Tuunanen T, Rothenberger M, Chatterjee S (2007) A Design Science Research
Methodology for Information Systems Research. J Manage Inf Syst 24 (3):45-77.

Pfeifer R, Rademakers P (1991) Situated Adaptive Design: Toward a New Methodology for
Knowledge Systems Development. Paper presented at the Verteilte Künstliche
Intelligenz und kooperatives Arbeiten, 4. Internationaler GI-Kongress
Wissensbasierte Systeme

Resnick M, Myers B, Nakakoji K, Shneiderman B, Randy Pausch, Selker T, Eisenberg M
(2005) Design Principles for Tools to Support Creative Thinking. IJHCI, 36 edn.,

Shneiderman B (2002) Creativity support tools. Commun ACM 45 (10):116-120.
Suchman LA (1985) Plans and Situated Actions: The Problem of Human-Machine

Communication. Xerox Palo Alto Research Center, Palo Alto, CA
Zhu L (2011) Cultivating collaborative design: design for evolution. In Procedings of the

Second Conference on Creativity and Innovation in Design (DESIRE '11). ACM,
New York, NY, USA, 255-266.

104

Creativity in Requirements Engineering (CreaRE)

‘Pictionades’: Enhancing Stakeholders’ Awareness about
Issues in Requirements Communication

Deepti Savio and Anitha P.C.

Corporate Research & Technologies, Siemens Information Systems Ltd., Bangalore, India
{deepti.savio,pc.anitha}@siemens.com

Abstract. The various issues involved in communicating requirements across
multiple stakeholders and stakeholder groups have been well documented in
literature and in experience reports. Despite this, however, most stakeholders
involved in a project seem largely unaware of what the potential consequences
of these issues can be. The manner in which stakeholders communicate
requirements to each other affects the subsequent requirements management
activities, and has a direct impact on the final form and scope of the stated
requirement. Here, we discuss the approach of using a combination of two
popular group games to convey to stakeholders without a requirements
engineering background the realities that underlie the communication of
requirements across multiple points. We then discuss the results of applying an
adaptation of this technique in a real world project.

Keywords: requirements communication, stakeholders, stakeholder groups

1 Introduction

Communicating requirements is one of the most crucial aspects of managing
requirements throughout a project. The manner in which requirements are captured
plays a key role in determining if they can be read, analyzed, re-written if necessary,
and validated [1]. Stakeholders without a requirements engineering (RE) background
often do not realize the impact of the consequences that requirements communication
issues can give rise to, while dealing with requirements at various phases of the
project life cycle. Communicating requirements without sufficient domain knowledge
or understanding of the context of the requirement, dilution of information, floating
stakeholders who work through multiple projects, partial and conflicting stakeholder
views [2] and so on are some of the causes of misinterpreting requirements while
conveying them. Although some stakeholders may be aware of these problems, they
may not always grasp the full extent of the potential implications of these issues.

Convincing stakeholders about the ground realities of these concerns and their

possible ramifications, as well as helping them understand and appreciate that other
stakeholders have differing points of view is the first step in reducing the chances of
ambiguity and uncertainty that are often reflected in requirements.

Therefore, in order to:

105

REFSQ 2012 Workshop Proceedings

� help raise awareness of the issues described above among stakeholders who do not
have an RE background,

� convey the significance of the impact of these issues in a creative and enjoyable
manner, thus eliminating the need for stakeholders to have to go through extensive
documentation, and

� ensure better retention of these messages through appropriate analogies,
we carried out an exercise involving a combination of two popular group games,
Pictionary and Charades – Pictionades – to demonstrate that requirements
communication has several inherent problems, especially in distributed project
settings [3], and that these concerns must be considered while making requirements–
related decisions throughout the project life cycle.

We decided to capitalize on the efficiency and ability of simple group games which
can be played at the workplace to drive messages whose importance is otherwise
often underestimated. Several games for eliciting requirements have been used in
workshops and in industry, such as [4], [5], [6] and [7]. The use of Pictionary for
working with students to teach requirements analysis is discussed in [8]. However,
there are fewer experiences of using of games for subsequent requirement
management activities after elicitation. The main objective of this exercise is to help
the participants appreciate, from the perspectives of other stakeholders, the difficulties
that invariably creep in during the communication of requirements. The game is
structured in such a way that the participants are able to easily relate the outcomes
with their own experiences in communicating requirements [9]. We made use of role
plays [10] in our technique in order to stress further on the lessons that we wished to
relay. We report the outcomes of this experiment and discuss an application of a
variant of this game in a real project.

2 Pictionades: Game Setting and Play

Project managers in any project often play a pivotal role in decision making and
conflict resolution among stakeholders. If they are equipped with:

� the realization that requirements communication issues are many, and that their
possible consequences could seriously affect the overall objective of the project

� the ability to understand matters from the perspectives of the other stakeholders
involved, and thus endeavor to efficiently reduce conflicts and create a good
rapport among stakeholders

� the means to ensure, as far as possible, that all teams work with a clear,
unambiguous set of requirements at all times,

then, this awareness would enable them to make and take better substantiated and
well informed decisions during the course of the project. We decided to try out a trial
version of Pictionades during a training program for project managers (hereafter
referred to as ‘PMs’) in our organization, to see if the approach would work.

106

Creativity in Requirements Engineering (CreaRE)

2.1 Pictionades set-up

The participants of the game were 9 PMs, having several years of experience on a
wide range of industry projects. We divided them into two teams - team ‘A’,
comprising three PMs, and team ‘B’ with six PMs. Each person in both teams
assumed one of three roles – the artist, the actor or the interpreter. A few high level
requirements for two products were given only to the artists from each team, who read
the information written on a slip of paper. The artist stood at the board, the actor at the
opposite end of the room, and the interpreter was seated in the middle, as shown in
Figures 1a and 1b.

Fig. 1a. Team A: Single Stakeholder per group

Fig. 1b. Team B: Two Stakeholders per group

The artist faced the actor and tried to draw out the given information on the board,

without talking, and without the use of any written language. The actor, at the other
end of the room, observed the drawings on the board, and, facing the interpreter (who
was seated between him and the artist), acted out what he inferred from the drawings
on the board to the interpreter, again, without talking. The interpreter, who had his
back to the artist and could therefore see only the actor’s actions (please see Figures
1a and 1b), wrote down his interpretations of the actions. He was allowed to ask
questions to the actor, to which the actor could reply only with a nod or shake of his
head. Note that there was no direct communication in any form between the artist(s)
and the interpreter(s) of either team.

We took a few high level requirements from the end user’s perspective, for two

example products - an online book shopping portal and a smart phone. Since we felt
that the example of the smart phone was a bit more complex than that of the online

2

Artist

1

Interpreter Actor

Artists Interpreters Actors

1

2

107

REFSQ 2012 Workshop Proceedings

book portal, Team A, who were given the online bookshop product, had one member
in each role, and Team B, who were given the smart phone product had two members
in each role.

The high level requirements for both examples given to the artists of both teams
are listed below in Table 1.1:

 High Level User

Requirement 1
High Level User
Requirement 2

High Level User
Requirement 3

High Level User
Requirement 4

Team A:
Online
book
shoppin
g portal

“I want to shop
online for all
kinds of books”

“I want two
payment options –
online, using my
card, and/or cash
payment when the
books are
delivered to my
place”

“I want the site to
remember my
preferences when
I use it next, and
show me books
that I’d be
interested in”

“I want to search
for the books I’m
looking for in all
retail outlets in my
area via the site”

Team B:
Smart
phone

“I want to sync
all my facebook,
outlook and
google contacts”

“I want text to
speech conversion
so that I can listen
to articles or read
the news paper
when I’m driving”

“I want to be able
to record a video
and
simultaneously
stream it online
using my phone”

“I want a mobile
TV feature in my
phone so that I can
watch my
favourite shows
while on the
move”

Table 1.1. Initial user requirements list for an online book shopping portal and a smart phone -
given to only the artists of each team

We monitored both groups as they worked in parallel in the two halves of the
room. The participants did the best they could, and, at the end of their allotted twenty
minutes, the interpreters of both teams managed to come up with the following
snippets of information:

 Point 1 Point 2 Point 3 Point 4 Point 5

Team A’s
Interpreter

“Screen, and
general UI
on screen”

“Buttons like
ok, cancel, etc
are available”

“Text box to
search for
something”

“Search
results”

“Google”

Team B’s
Interpreters

“Connector
with 3
interfaces”

“For email,
facebook and
outlook”

“Contacts
list”

“While
driving it is
possible”

“Look at
contacts and
make calls”

Table 1.2. Results at the end of play

2.2 Rationale for Game Setup

When the results at the end were collected and divulged to all members of both
teams, it was discovered that the actors and interpreters had roughly gauged only a

108

Creativity in Requirements Engineering (CreaRE)

few parts of some of the requirements, without having an overall idea of what the
product was. The objectives of structuring the game in this fashion are listed below:

No/limited verbal communication:

Language is often a problem between stakeholders who may be not only from

different countries, but also from different regions within a country. By eliminating
verbal communication between the artist and the actor, we wished to highlight the
issue of how two stakeholders would communicate if they had limited knowledge of
each other’s language(s), or no language in common through which they could
communicate. This situation compelled the participants to consider a combination of
alternate approaches of communication, such as the emphasized use of body
language, gestures and expressions, along with pictorially representing the given
information.

Disconnected communication link between the artist and the interpreter:

In real world scenarios, there is often no direct communication between

stakeholder groups. For example, the end-user of a system and the system architect
generally do not communicate directly with each other - the market research team (or
the RE team) serves as the interfacing link between these two stakeholder groups.
Furthermore, there are instances of numerous groups of co-located stakeholders who
may or may not be in touch with each other. Hence, utmost care must be taken to
ensure that stakeholders’ needs are identified and captured as concisely as possible, so
that the intended information is transmitted, received, and subsequently relayed from
stakeholder group to stakeholder group.

Distance between stakeholder groups and time constraints:

We ensured that the artist, actor and interpreter were positioned far away from each

other in the room to signify that face to face discussions with stakeholder groups may
not always be possible and to underscore the fact that distance may impede
communication. Despite the difficulties encountered, the participants were obliged to
try and complete their mission while working within the constraints in the allotted
interval of time, as is the case in reality.

2.3 Highlighted Communication Issues:

The lessons which we wished to convey to the PMs through Pictionades are listed
below:

From the stakeholder perspective:

� It is critical that stakeholders understand and appreciate differences in other
stakeholders’ 1) assimilation of context-based understanding, 2) domain
knowledge, 3) language, and 4) communication skills.

� Each stakeholder in the communication chain will interpret an incoming
requirement in a particular form, in his or her own way, depending on his or her

109

REFSQ 2012 Workshop Proceedings

background knowledge and level of domain understanding, and consequently relay
it another form, in his or her own way to the next stakeholder, as shown in Figure
2. (This is analogous to the game ‘Chinese Whispers’, which is often what happens
in real world instances of communication!)

Fig. 2. Input and output form of a single requirement to and from each stakeholder in a simple,
linear communication chain (In reality, there is a complex network of stakeholder groups who
may or may not be in touch with other stakeholder groups).

� Multiple stakeholders within a group (for example, several system developers and
testers in the development and test teams respectively) will result in a greater
exchange of ideas, but stakeholders within a group may have differing opinions.

� The presence of many such stakeholder groups along the communication network
may often result in further misinterpretation of requirements – hence leading to the
observation that requirement decisions must be taken as a group and then
communicated. Here, the importance of setting up single points of contacts for
each stakeholder group was identified.

From the communication techniques perspective:

� The overall system or product and its purpose must be described as clearly as
possible before communicating its features.

� Each stakeholder has his own limitations in communication techniques, and these
limitations may cause constraints in communication. Furthermore, additional such
constraints may be encountered at any point – stakeholders must gradually learn to
work within and around these constraints.

� Several rounds of communication may be required to obtain clarity on a single
point. This point was demonstrated when we observed the participants trying to
refine their articulation of the information that they wanted to communicate, and
provide more intelligibility on expression techniques, when it was observed that
the recipient of the information hadn’t fully grasped the information.

� Establishing well understood terminology that can be understood irrespective of
stakeholders’ backgrounds is an effective means in which communication can be
made more effective. This point was observed when we saw the participants
instinctively making use of hand signals such as a raised palm for ‘stop and start
over’, a quick shake of the hand/head for ‘no, incorrect’, a thumbs up sign for
‘right’ and so on, when they realized that the other participants easily understood
these gestures.

� It is important to communicate what the system is not supposed to do, in addition
to what features and functions it must exhibit. This would help in the formulation
of both positive and negative use-case scenarios of the system. This learning is

O/p
form
‘d’

Stakeholder 1 Stakeholder 2 Stakeholder 3 Stakeholder 4

O/p
form
‘b’

I/p
form
‘c’

I/p
form
‘e’

O/p
form
‘f’

I/p
form
‘g’

O/p
form
‘h’

I/p
form
‘a’

110

Creativity in Requirements Engineering (CreaRE)

indirectly helpful for stakeholders in determining what components should go into
the system, interface, environment and domain [11]. We observed our participants
sub-consciously trying to delineate which entities fit into what category, while
thinking of haves and not-haves for the product, thereby carrying out an intuitive
scope analysis without actually being aware of what they were doing.

� The importance of continuous validation and feedback on communicated items as
and when possible cannot be underestimated. This stresses on the fact that the only
way of obtaining good quality requirements is by reviewing, reviewing, and
reviewing.

� The articulation and communication of non-functional requirements of the product
across distributed stakeholders would be even more difficult, given constraints in
communication techniques.

3 Applying a modification of Pictionades to a real world project

We now discuss the application of an adaptation of this technique to a real world
project. Project X is currently underway for the development of a software system for
the management of an industrial automation plant, and is still at an initial stage.
Before we set about discussing the requirements for the system, we asked the end user
representatives to communicate to us their understanding of the overall context of the
system, as well as the layout of the plant through pictures. The plant turned out to be a
complex combination of several large scale systems, operations and processes
working together. Physical components such as ‘stackers’, which deposit raw
materials into organized, measured stockpiles, and ‘reclaimers’, which collect pre-
determined amounts of the material from specified stockpiles, as well as logical
entities such as the processes and workflows followed to transport these materials
from one place to another were identified.

Nguyen and Shanks suggest that creativity techniques be enmeshed during RE

activities from the product, process, domain, people and context perspectives [12].
Following this thread, we made use of personas (finding out, describing and assigning
realistic personalities to each of the stakeholder groups for the software system)
during requirements discussions with the various end user representatives for Project
X. Each member of the end-user representative group was assigned a particular
persona and then asked to draw out his mental picture of what the system would look
like, from the perspective of his persona. We kept the personas as distinct and diverse
as possible, in order to capture the gamut of the possible types of people who would
operate the system, and the various conditions in which the system would be operated.

We collected the pictures together and mapped out their common features. This

helped us in further understanding the context, as well as the surrounding
environment of the system. We were able to determine that there were several
categories of end users for the system, and were encouraged to think from each of the
groups’ perspectives, and visualize their notion of the look and feel of the system.
Since text based representations were kept to a minimum, discussion times were cut
down considerably – we were able to come to a quick consensus – and visual clarity

111

REFSQ 2012 Workshop Proceedings

was provided on most of the interfaces. Due to this, we were able to elicit and
communicate several requirements for the user interface of the software system which
we may have otherwise overlooked. We were also able to determine use case
scenarios, and develop a context diagram with actors and end users from the pictures.

4 Conclusion

Here, we describe the experiences of conducting a combination of the games
Pictionary and Charades among project managers in the hope that it would aid them
in making better and more well–informed requirements related decisions during the
course of project execution. The usage of drawing out information from the
perspectives of other stakeholders was then tried out for a real world project, with
encouraging results. The game was played by project managers, with the intention of
helping them understand and appreciate the inherent difficulties involved in
communicating requirements. Pictionades is easy to play, and successfully serves as
an ice-breaker among stakeholders who are unfamiliar with each other, while
additionally creating a light and lively atmosphere to work in. The game can be
played by all stakeholder groups in a project, and would encourage each role to think
from the perspective of the other participating roles. Since the game doesn’t take
much time, and can be carried out using readily available office stationery and
material, it can be conducted during group discussions, training sessions, and so on. In
the future, we would like to see how Pictionades may be extended to:

� other types of requirements, apart from functional requirements – such as non
functional, environment, quality, performance related requirements, and so on.

� the other requirements management activities in the life cycle of a requirement –
such as resolving and closing issues quickly in change control board meetings

� various development methodologies, such as the agile family of methodologies

The scope of the game could also be increased in the literal sense by having several
groups of artists, actors, and interpreters, or even creating more roles. Several such
groups could form a longer communication chain. Additionally, more complexity
(and a sense of reality) could be added by breaking the linear arrangement of
stakeholder chains and creating a more complex network that is spread out across the
room.

An advantage of using the Pictionades approach for the purpose of helping
participants appreciate and assimilate the impact of issues encountered in
requirements communication is that the technique stresses on using multiple forms of
communication, apart from just verbal exchange of information, thereby pushing
players to think outside the box as the game progresses, and come up with
unconventional, but effective solution possibilities. Furthermore, Pictionades is
designed and set up in such a manner that the players are easily able to apply the
experiences and outcomes of the game in the context of requirements engineering [9].

112

Creativity in Requirements Engineering (CreaRE)

References

1. Nusibeh, B., Easterbrook, E.: Requirements Engineering: A Roadmap. In: Future of
Software Engineering (FOSE ’00), pp. 35–46, ACM, New York (2000)

2. van Lamsweerde, A.: Requirements Engineering: from Craft to Discipline. In: 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT
'08/FSE-16), pp. 238–249, ACM, New York (2008)

3. Herbsleb, J. D.: Global Software Engineering: The Future of Socio-technical Coordination.
In: Future of Software Engineering (FOSE '07) pp.188–198, IEEE Computer Society,
Washington (2007)

4. Millard, N., Lynch, P., Tracey, K.: Child's play: using techniques developed to elicit
requirements from children with adults. In: Third IEEE International Conference on
Requirements Engineering, pp. 66–73, IEEE Computer Society, Washington (1998)

5. Maiden, N., Gizikis, A., Robertson, S.: Provoking Creativity: Imagine What Your
Requirements Could Be Like. IEEE Software, vol. 21, pp. 68–75, IEEE Computer Society
Press, Los Alamitos (2004)

6. Hainey, T., Connolly, T.: Evaluating Games-Based Learning. International Journal of
Virtual and Personal Learning Environments (IJVPLE) 1, pp. 57–71, IRMA, Hershey
(2010)

7. Boulila, N., Hoffmann, A., Herrmann, A.: Using Storytelling to Record Requirements:
Elements for an Effective Requirements Elicitation Approach. In: Fourth International
Workshop on Multimedia and Enjoyable Requirements Engineering (MERE ’11), pp. 9–
16, IEEE Computer Society Press, Los Alamitos (2011)

8. Beatty, J., Alexander, M.: Games-Based Requirements Engineering Training: An Initial
Experience Report. In: 16th IEEE International Requirements Engineering Conference, pp.
211–216, IEEE Computer Society, Washington (2008)

9. Alexander, M., Beatty, J.: Effective Design and Use of Requirements Engineering
Training Games. In: Third International Workshop on Requirements Engineering
Education and Training (REET '08), pp. 18–21, IEEE Computer Society Press, Los
Alamitos (2008)

10. Zowghi, D., Paryani, S.: Teaching Requirements Engineering through Role Playing:
Lessons Learnt. In: Eleventh IEEE International Conference on Requirements
Engineering, pp. 233–241, IEEE Computer Society, Washington (2003)

11. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A Reference Model for Requirements
and Specifications. IEEE Software 17, pp. 37–43 (2000)

12. Nguyen, L., Shanks, G.: A framework for understanding Creativity in Requirements
Engineering. J. Inf. Softw. Technol. 51, 655–662 (2009)

113

REFSQ 2012 Workshop Proceedings

Requirements Analysis for Multimedia Interactive
Informative Systems: A Metamodelling Approach

Sylviane Levy and Fernando Gamboa

Universidad Nacional Autónoma de México

sylviane@unam.mx, fernando_gamboa@cuaed.unam.mx

Abstract. Multimedia Interactive Informative Systems (MIIS) are software
applications resulting from the convergence of multiples technologies such as
audiovisual, computing and communication. As other mass media, they aim to
transmit information to a large, diverse and dispersed public. Capturing
requirements for those applications is one of the most difficult problem since
final users are non-captive. An approach for designing a MIIS should follow the
same methodology used for scriptwriting. As of now there are no techniques for
transforming a script into requirements that can be used by a software
development team. In this paper, we propose a metamodel to be used as a
domain specific language when designing a MIIS and define new
communicative quality attributes to complete ISO/IEC 25010 quality in use
model. A new approach is proposed, based on analyzing class diagram through
quality attributes to establish MIIS requirements and applying it through a case
study.

Keywords: Interactive systems, Multimedia, Requirements analysis,
Metamodel, quality-oriented design

1 Introduction

In this study, we define Multimedia Interactive Informative Systems (MIIS) as
software systems that result from the convergence of multiple technologies, for
example the combination of computational, audiovisual and communication
technologies. The purpose of MIIS is to diffuse information to a large, dispersed,
diverse, and non-captive public. An example of a MIIS would be a website whose
goal is to transmit information, such as an online newspaper or a cultural website. A
kiosk in a museum, cultural CD-ROMS, and many applications for mobile phones
and tablets can also be considered as MIIS.

As with other communication media, such as cinema and television, whether or not
the MIIS fulfils its goals depends largely on quality characteristics related to the
communication between the transmitter and the receiver. In this case, the qualities of
communication between the MIIS and its final users are essential, and the success of
the MIIS depends on the user finding these systems interesting, informative, and
credible. However, these criteria are not included among the characteristics of quality

114

Creativity in Requirements Engineering (CreaRE)

models used for software such as the ISO/IEC norm 25010 [1] and its predecessor
ISO/IEC 9126.

These types of needs are difficult to express, and even more difficult to translate
into system requirements. But if they are not satisfied, the user can discard the
application with the same freedom that she or he can change the channel of the
television or leave a cinema when the film is disappointing, rendering the system
essentially useless.

It is not accidental that the existing models of quality do not consider these types of
characteristics. Software applications traditionally help captive users to solve concrete
problems, and therefore the problem of retaining interest does not exist. The MIIS’s
user, on the other hand, is generally non-captive: he or she has taken a voluntary
personal decision to acquire the information, and is not bound to use the system by
any degree of necessity.

Traditionally, the requirements of a computer system are established based on an
analysis of the needs expressed by the final users. In the case of MIIS, where the
objective is to transmit information, the end users cannot easily decide on the content
of the application. This therefore generally requires the participation of content
experts who then decide what information should be contained in the system, not the
users. [2]

The above observations explain why it is necessary to explore new methodologies
to establish the requirements of an MIIS, as well as to find new attributes of quality
that are more appropriate to the transmission of knowledge to non-captive users.

This study proposes a methodology that allows the establishment of the
requirements of an MIIS. We propose a metamodel of MIIS to be used as a domain
specific language used to design the system. In this way, the model of quality in use
based on ISO/IEC 25010 will be enriched with new characteristics of quality that will
allow the completion of an analysis of requirements for the system.

This paper is organized as follows: section 2 is devoted to the background of our
work through the study of existing methodologies; section 3 presents Multimedia
Interactive Informative Systems (MIIS) as a metamodel; section 4 defines the
expected qualities for MIIS; a case study is detailed in section 5 and section 6 is the
conclusion.

2 Background

Studies covering the development of multimedia have split along two general lines:

� The first line derives from the field of communication, where the authors
concentrate on the creation of a new communication medium. These works are
based on a development process that is strongly influenced by that used for making
films or videos.

� The second line derives from the design and development of conventional
software, and is focused on Requirement Engineering and on the resolution of
problems linked to the handling of multiple media, but leaves aside the
communicational problem.

115

REFSQ 2012 Workshop Proceedings

2.1 Communication perspective

In general, the works that have come from the field of communication studies are
written as scholarly manuals and use as a conceptual and development methodology
from other media, such as cinema or television.

 One of the most mature of these works is by Friedmann, who proposes a process
of analysis and scriptwriting for different means of communication, which he calls
visual media, which include traditional media but also websites, educational and
training software applications, information kiosks, and videogames [3]. Friedmann
establishes an analytical process whose goal is to yield a creative concept of visual
media on the basis of which the script is written.

Nonetheless, even in the case of interactive systems, the screenplay is written in a
style strongly influenced by the cinematographic industry, given that: “Books,
movies, television, theatre—all imply the creation of specific documents that establish
formats that the interactive industry does not have.” [3] In particular, the screenplay
does not specify how it can be converted to the requirements of a system that must be
understood, interpreted, and developed by a multidisciplinary team of designers,
communications specialists, and programmers, among others.

This study will use Friedmann’s framework to analyze the field of MIIS and to
establish a concept for application. .

2.2 Software perspective

In the field of computing, there are few studies which consider the transmission of
information as the main purpose of the system. Among the most original studies are
those from Bolchini, who invented the term “infosuasive” to define Web applications
that are both informative and persuasive, such as those applications that “intend to
transmit information and have the objective (declared or not) of influencing the
opinion of users, their attitudes and conduct.” [4]. Bolchini bases his work on the
Objective-Centered Design Cooper's methodology [5], centering his analysis on the
need to meet the objectives of different users and introducing communication
objectives as elements of analysis for the design of Web applications. One of his
contributions was to identify the need to carry out and to document a communication
analysis to build website requirements, such as content, layout, architecture, and
navigation.

 Another work which considers new types of requirements is that of Davide
Callele [6], who studies video games in particular and has introduced the concept of
emotional requirements. These analyze and document the emotions that are desired to
be transmitted to the users/players. On the basis of these emotional requirements, he
establishes functional and non-functional requirements. The concepts presented in
these works will allows us to analyze the requirements of MIIS through qualitative
criteria such as interestingness, informativeness and credibility.

There are a variety of techniques to elicit requirements [7], and these generally
involve the final users of the system and stakeholders. But they are very few studies
that consider requirements that are not elicited by users or stakeholders, which, as
noted above, is the case of MIIS. Among these few studies, in [8] it is suggested a
methodology based on the analysis of a metamodel using workshops in which
different members of the team participate. In [9] metamodels are used as a “medium

116

Creativity in Requirements Engineering (CreaRE)

for integrating and customizing Requirements Engineering techniques” and in [10],
the role of a quality metamodel is discussed.

Based on these studies, we propose the use of a metamodel to represent the system
and derive its requirements through the analysis of attributes of quality.

3 Multimedia Interactive Informative Systems (MIIS)

3.1 Definition

As mentioned, MIISs result from the convergence of multiple technologies, with the
objective of transmitting information to a wide, diverse, and dispersed audience, and
are composed of different multimedia components (text, images, video, animation,
and audio). The interactivity means that the system allows, and in fact requires, the
active participation of the user in order to fulfill the goal of transmitting information.

The development of MIISs thus varies from that of conventional software in the
following ways: communicational problems have to be resolved, different users use
the systems, different data enters the system, and the contexts in which the
information is used and the technologies developed differ.

3.2 MIIS Components

The existing literature contains a number of proposals to describe multimedia
applications created to transmit information. One of the classifications that describes
best the composition of a multimedia system is found in [11] where the essential
functions described above are illustrated in the "form of circles representing the three
components that define a balanced digital project: visualization, interactivity, and
content". Based on this description, we will propose a metamodel to describe a MIIS.

3.3 MIIS Metamodel

We propose a MIIS Metamodel composed of three main meta classes, Window,
Content, and Scene. (Fig. 1)

� Window represents the architecture of the system, which allows navigation
between the interfaces.

� Content represents the information to be transmitted. It is displayed by different
media, which could be simply audiovisual or also interactive.

� Scene represents all the audiovisual elements of the interfaces that have the
purpose of drawing the user into the application.

From the above, it is clear that what the user can see, hear and interact with, are the
media and interactive media:

� Media can represent information, contextualize content, have an esthetic,
emotional, or functional purpose, or can be interactive visual elements. Media are

117

REFSQ 2012 Workshop Proceedings

made by classes of text, images, sounds, videos, 2D and 3D animations and
interactive media.

� Interactive media represent the different functions which allow the user to interact
with the system. They are formed by any type of interactive component such as the
display of media, 3D immersion, simulations, hypertext, tests, queries, etc.

Fig. 1. MIIS Metamodel

4 MIIS Quality

4.1 Quality of a software

Among the models of quality that are most often used to evaluate software is the
norm ISO 25010 which substitutes the well known ISO 9126 for the models of quality
of software [1] and ISO 25012 [14] for the quality of data.

Among the characteristics of the three quality models, none of them address the
communicational aspects of the software, which is to say the quality of the
communication that is established with the user. In particular, aspects such as
interestingness, informativeness, and credibility are not considered in these models.

118

Creativity in Requirements Engineering (CreaRE)

4.2 Quality of a MIIS

Definition of Communicational quality characteristics.
If a system of quality is to be characterized by its level of communication, the model
of quality in use described in [1], should be complemented by new characteristics,
whose goal is to evaluate the quality of communication between the system and its
users. Three characteristics are introduced as follow:

� Interestingness is the capacity of the system or its components to attract the user
and maintain his or her interest and attention for a minimum time in a specific
context.

� Informativeness is the capacity of the system or its components to inform the user
with relevance, in a structured way and in a specific context.

� Credibility is the capacity of the system or its components to allow the user to feel
involved in a credible and authentic environment in a specific context. It allows the
user to believe in the veracity of the information that is being transmitted.

Evaluation of Communicational Quality Characteristics.
The evaluation of the characteristics of communication of an MIIS is used generally
to evaluate an application under development, typically a prototype. The goal is to
assess the impact of its characteristics on the user before the application is completely
developed.

The evaluation is carried out across a number of different attributes, applied to a
series of components of the application, according to the selected strategy. If one
wishes to isolate those components that are not fulfilling their objectives, it is
necessary to evaluate the satisfaction of a quality attribute by components. As seen in
table 1, it is possible to establish metrics that allow the evaluation of each of the main
meta classes. In cases where a questionnaire is used, it is necessary to associate a
quality scale to each.

Table 1. MIIS metrics for quality attributes

Quality characteristics Content quality
attribute

Scene quality attribute Window quality
attribute

Interestingness Time spent by users Questionnaire about
interest of the scenes

� Number of windows
visited

� Time spent in each
Window

Informativeness � Number of block
content

� Structure of
information

� Relevant
� Actual
� Questionnaire about

information retained
by users

Questionnaire about
Information contained
in scenes

Credibility � Number of
references

Questionnaire about
credibility of scenes

119

REFSQ 2012 Workshop Proceedings

To achieve the quality of communication required, the components of the system
must be designed with that intention, which is to say, they must be the product of an
analysis of requirements that considers the communication purpose of the application.

5 MIIS Requirements

According to [13], “Quality is a feature that is ‘built’ in an information system and
not added afterwards.” In this sense, if we accept that a MIIS should be interesting,
informative and credible, those quality attributes have to be taken in consideration as
part of the requirements analysis.

Unlike traditional software, which captures the requirements of the final users, in
the case of MIIS, the requirements are established based on a creative concept, which
is the product of a communicational analysis.

The purpose of the creative concept is to "solve the communication problem, reach
the target audience, achieve the objective, embody the strategy, provide the content of
the application, and show how it will work". [3] But, at the initial stage it is just an
idea that needs to be translated into requirements that a development team is able to
understand and execute in a creative way.

In order to establish the requirements of the MIIS, the first step consists of creating
a model of the application based upon the concept. As each class inherits some of the
MIIS quality attributes, it plays a role in responding to the needs of informing,
interesting, and convincing the user. It is then possible to elicit the requirements of
each component of the application through the analysis of the attributes of quality.

5.1 Case Study modeling

In order to illustrate the above, we will apply the methodology to a study case: “Pierre
y la Coatlicue”, a system developed to motivate students of Spanish as a foreign
language through, at the same time, learning and understanding Mexican culture.

The system is aimed at a large public around the world. Even if the students can be
considered captive in the study of the language, they are not captive in the study of
Mexican culture. In effect, their priority is generally to learn Spanish and they show
less interest in learning Mexican culture. If the student is to be motivated to learn the
language as a result of his or her interest in Mexican culture, the system must present
the latter in an engaging way.

After carrying out the relevant communicational analysis as suggested by
Friedmann [3], the strategy selected was the use of narrative. Telling a story has the
virtue of motivating the user to know what is going to happen next, and therefore
maintains his or her interest in the application.

On the basis of this strategy the following concept was proposed:

Tell a story through several stages in which the main character is a foreigner
visiting Mexico City with whom students can identify and feel empathy towards. The

inciting element of the story is the search for the Coatlicue, an Aztec monolith, in
different locations of Mexico City. The story must include elements of mystery and

plots to keep the interest of the user and incite him to continue. To transmit the
information, a series of virtual resources, which young people are used to using, will
be offered, such as a mobile phone to communicate with experts, a camera, a GPS, a

120

Creativity in Requirements Engineering (CreaRE)

music player, interactive books, and a Facebook link to communicate with other
students. The credibility of the information is established by the creation of a realistic

context.

This concept specifies the manner in which the system will respond to questions
such as: how to attract and maintain interest, and how to inform and involve the user.
With this concept as a basis, the model of application is established, using the domain
specific language defined in the MIIS metamodel. In Fig. 2, we show some of the
most important features of "Pierre y la Coatlicue" model.

Fig. 2. Case Study Model

5.2 Requirements analysis

In this model, some of the quality attributes are attached to classes, inherited from
MIIS and are used to analyze requirements of the system. For instance, to make the
system interesting, it is necessary to decide which components of the MIIS will
ensure the most interest from the user.

In the "Pierre y la Coatlicue" MIIS, for example, as the story will be told through
dialogs and cell phone messages, those components should maintain the users'
interest. They must also be informative and credible. In the same way, the inciting
element that introduces the story should have same attributes of interest, information
and credibility.

As an example, in table 2, some non-functional requirements of the initial
animation are described. The analysis is carried out through the attributes of
communication and, in parallel, when necessary, the evaluation of the impact of the
attribute on the user are established.

121

REFSQ 2012 Workshop Proceedings

Table 2. Proposition for resolution and evaluation of quality goals for the inciting animation

Quality
Characteristics Proposal Evaluation

Interesting

� Solve a mystery:
discover who
Coatlicue was, why
was she buried and by
whom and where is
she today

� Time spent viewing animation

� Degree of interest to go forward

� Inciting incident understanding

Credible

� Characters and
background should be
in a realistic style

� Ambient sounds
� Students should

indentify with main
character

Questionnaire:

� Empathy with main character

� Who main character is?

� Where is action located?

Informative
� The mystery should

be linked to Mexican
history

Questionnaire:

� Historical context understanding

6 Conclusions

In this paper, a methodology that allows the design of an MIIS, taking into
consideration its communicational aspects, has being introduced. In order to elicit the
requirements of a MIIS without the benefit of the users’ input, a MIIS metamodel has
being formulated and the model of quality in use of ISO/IEC 25010 has being
complemented with a series of new quality attributes of communication. It was shown
through a case study that it is possible to establish a system's requirements by
analyzing each element of the model through attributes of quality.

From the results of this work, we conclude that communication quality attributes
should be part of a quality in use model. They should also be used as elements of
analysis to ensure that the system responds to users expectations; it is therefore
possible to evaluate their impact on them.

This work opens new perspectives in taking communication problems into
consideration while designing MIIS. The formalization of a methodology to design a
MIIS is indispensable, given that it offers a multidisciplinary development team
communication tools between professionals who come from very different fields.
These instruments allow the vision of the work being designed to be unified, and
allows the effective drafting of the documents that guide the developers.

References

1. ISO/IEC 25010:2011, Systems and software engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- System and software quality models (2011)

122

Creativity in Requirements Engineering (CreaRE)

2. Jones S. and Britton C., Early Elicitation and Definition of Requirements for an Interactive
Multimedia Information System, Proceedings of ICRE ’96, IEEE, pp.12-19 (1996)

3. Friedmann Anthony, Writing for visual Media, Focal Press (2006)
4. Bolchini Davide, Garzotto Franca, Paolini Paolo, Value-driven Design for “Infosuasive”

Web Applications, WWW 2008, April 21-25, Beijing, China, pp.745-754, (2008)
5. Cooper Alan, Reimann Robert and Cronin, David, About Face 3, Wilwy Publishing, (2007)
6. Callele, Davide, Neufeld, Eric, Schneider, Kevin, Emotional requirements, IEEE Software,

(January/February 2008)
7. Zowghi, D., Coulin, C., Requirements Elicitation: A Survey of Techniques, Approaches,

and Tools, in Engineering and Managing Software Requirements, edited by Aybuke Aurum
and Claes Wohlin, Springer: USA (2005)

8. Coulin, Chad, Sahraoui, Abd-El-Kader, A Meta-Model Based Guided Approach to
Collaborative Requirements Elicitation, SE-081010, (28 October 2008)

9. Navarro, Elena et al., A Metamodeling Approach for Requirements Specification, Journal
of Computer Information Systems, 47(5): 67-77 (2011)

10.Deissenboeck, Florian et al, Software Quality Models: Purposes, Usage Scenarios and
Requirements, WoSQ’09, Vancouver, Canada, May 16, 2009

11. Guéneau, Gregory, Conduite de projets en création numérique, Eyrolles (2005)
12.Sundar, Shyam, Xu Qian, Bellur Saraswathi, Designing Interactivity in Media Interfaces: A

Communications Perspective, CHI 2010: Perspectives on Design, CHI 2010, April 10–15,
2010, Atlanta, Georgia, USA.

13.Berki, Eleni et al., Requirements Engineering and Process Modelling in Software Quality
Management-Towards a Generic Process Metamodel, Software Quality Journal, 12, 265-
283, Kluwer Academic Publishers, Netherlands, 2004

14. ISO/IEC 25012:2008 Software engineering -- Software product Quality Requirements and
Evaluation (SQuaRE) -- Data quality model (2008)

123

REFSQ 2012 Workshop Proceedings

Research Preview: Using Improvisational Theatre to Invent and
Represent Scenarios for Designing Innovative Systems

Martin Mahaux1, Anne Hoffmann2

1 PReCISE Research Centre, University of Namur, Belgium,

Martin.Mahaux@fundp.ac.be
2 Software Engineering Institute, Rijksuniversiteit Groningen, The Netherlands,

A.Hoffmann@rug.nl

Abstract. [Context and Motivation] Scenarios are a well-known tool in
Systems Design. In particular, they are recognised as an effective means for
communicating requirements between business stakeholders and system
developers. When designing innovative socio-technical systems, describing
creative user experiences is probably one of the first steps. [Problem] However,
the question of how good scenarios are invented has not been widely discussed
in Requirements Engineering. We can also wonder if the written and/or drawn
form is the most appropriate for documenting stories. [Principal ideas]
Building on works inside and outside Requirements Engineering, we suggest
that improvisational theatre can be an effective way to invent user experiences
in a collaborative way, and to have them instantly documented.
[Contributions] During a workshop, we showcased one possible form of doing
this and discussed it with the audience. We relate this experience here, mention
some observations and present our research agenda in this direction.

1. Introduction

We know that scenarios are one of the best techniques for discovering requirements
[1]. We also know that, in many situations, requirements are more the result of a
collaborative creative effort than they are gathered or translated from the users [2].
The goal we set when using Improvisational Theatre (improv) during this
collaborative requirements session is the efficient and effective generation and
communication of creative scenarios. In doing this we follow recent advice in Design
to focus scenarios on user experience instead of on the system itself [3]. We also
introduce fun and play in a rapid prototyping process, as suggested by Schrage for
example [4]. In this short paper, we briefly present some related work and describe
the 30 minutes demo showcased during the 2nd International Workshop on Creativity
in Requirements Engineering (CREARE’12). The video extracted during this
presentation is available online from the first author’s blog [5]. We finally make some
observations and give an insight of our plans for future work.

124

Creativity in Requirements Engineering (CreaRE)

2. Related Work

We are not the first in thinking about generating scenarios in Requirements
Engineering (RE). The most important body of work in this direction probably lies
around the CREWS-SAVRE method from Maiden and colleagues [6]. They have
developed and experimented a software tool (desktop, then mobile; text-based, then
multi-media) to generate scenarios from a use case, based on heuristics for systematic
alternate course identification. However, this approach requires a pre-existing
scenario or use case. Our technique is more concerned with creating those initial
scenarios efficiently. CREWS-SAVRE is also heavily engineered, while our
technique would be more natural, and lightweight. More recently, Atasoy [7] has been
incorporating techniques from film and sequential art into a tool to provide design
teams with an experiential approach towards designing interactive products. Our
technique is more dynamic and lightweight, with a focus on the creativity and agility
that improv can provide. Both techniques are likely to be complimentary with ours.

Creativity in general has received significant attention in RE. A recent review of these
works can be found in [8]. Many creativity techniques exist, but few have been
applied to RE. In a prior work [9], [10] we and others have suggested that exercises
from the improv world could be used as a training to help RE teams to be more
creative in teams. In related domains, many authors have suggested the use of drama,
role-play or storytelling in various ways for different purposes, including
requirements gathering [11–17]. They indicate many possible ways to use theatre-
related concepts in design, with various degrees of success, but lacking scientific
validation of empirical results. We build upon this work to suggest the course of
action described in the next section.

3. Using Improv as an Experience-Centred Participative
Design Technique

3.1 Improv for inventing and representing scenarios

Improvisational theatre, or improv for short, is when actors simultaneously write,
direct and play theatre in front of an audience. Actors build on and act out ideas to
interpret a theme given to them in real time. Each is unaware of what the other is
thinking but acts as if in the same world, imagining what others are doing, seeing and
hearing. Each responds to the other actors with new propositions that take the show
forward, no matter how bizarre the direction might seem. These propositions build the
performance piece by piece. While this discipline exists since the ancient Greeks
times, we are interested in its recent modernization as described by Johnstone [18] or
Spolin [19]. Along with many followers, they have provided a comprehensive body of
knowledge that can be used to invent and represent scenarios on the fly, in a
collaborative way.

125

REFSQ 2012 Workshop Proceedings

The expected strengths of using improv as a design technique in RE are the following:

o Improv supports collaborative creativity: improv as we use it can be seen as

mechanism to create novel, unexpected stories from diverging raw material,
and adapts well to stakeholders groups. Interaction between players, and
between the audience and the players, is key to improv.

o Improv is quick and cheap: given the cost of N people locked in a meeting
room, improv’s immediacy makes it a very cheap tool compared to other
slower techniques.

o Improv is flexible: the lack of fixed recording media makes it for a total
flexibility, while video recording and a-posteriori editing remains possible.

o Improv is intuition-based: improv taps into your intuition to build stories.
This neglected idea source complements well with more rational moments in
your creative process.

o Improv is experience-centred: the focus is not on the designed product, but
on the user experience around it.

o Improv enables a high degree of representation: actors playing can say
much more than a UML diagram or a list of actions in a process diagram, or
a drawn storyboard. Emotions in particular are naturally represented.

3.2 The Demo Session at CREARE

To demonstrate our technique at the CREARE workshop, we asked the workshop
audience to imagine they were the stakeholders of a project dedicated to build a
software application to enhance car-sharing between people. We initially asked for
three minutes of informal brainstorming on possible personas and mobility situations.
The result was documented on a flip chart, so that they could easily look at it
throughout the exercise. The brainstorming gave rise to two very basic personas (a
business woman and a conference participant from a foreign country) and some
indications on a situation (car-sharing to a conference in Paris in winter). We then
immediately started a 5 minute improvised play using the given input. Both of us are
trained and experienced improvisers and one of us has worked on a car-sharing
project. A third character from the audience who was untrained in improv entered
towards the end of the play. During the play, we asked people to note down bits of
experience they liked, or disliked, and to derive desired or undesired functionality for
our new product. After the play, the audience shared the notes they had made during
the improv, and this discussion prompted the generation of further ideas, in
conjunction with the unused ideas from the initial brainstorming.

3.3 Observations from the demo session

Despite its limited duration, our improvisation at CREARE workshop resulted in the
generation of numerous creative and interesting ideas. It was interesting to see how
the audience was continuing the story collaboratively during that discussion,
inventing alternative courses. Some participants seemed to become even more
creative throughout the discussion of further possibilities. It is clear that a novel and
useful scenario had been invented and represented for the stakeholders in an effective

126

Creativity in Requirements Engineering (CreaRE)

way. “Unrealistic” and “crazy” behaviors during the play were not seen as irritating,
but rather served to release the audience members from constrained thinking and
thereby triggered more novel ideas. Overall we received good feedback, and the
audience had both enjoyed themselves and generated a significant number of
requirements and solution concepts for the car-sharing domain.

4. Future Work

The above described session can however certainly not be considered as a validation
of our technique. It is in our plans to do this validation work in a near future. This will
on one hand let us assess the strong and weak points of using improv compared to
other techniques, and on the other hand refine our techniques and prepare guidance on
when and how to use improv, which improv form to use in which circumstances, how
to facilitate improv sessions, how to document them and how to train people.

Empirically assessing the efficiency and effectiveness of such a technique will
however not be easy, for two main reasons. First, representative measures will be hard
to define, and to observe. To mitigate this, we have done some preliminary work to
understand creativity, and in particular collaborative creativity, in RE [8], [20]. This
work should help us define measures, however imperfect, in this “soft” domain.
Second, there are many potential complex variables that have an influence on the final
results, including the desired kind of creativity (in [8], we show there are many
different kinds of creativity), the level of details of desired requirements, the freedom
in the scope, the product type (custom or market), the place in time within the
process, the training or team building previously received, the available time, the
organizational climate, the experience of the facilitator... This requires doing as many
experiments as possible and carefully recording the state of these variables during
experiments, keeping some of them fixed.

5. Acknowledgments

We would like to thank the organizers of the CREARE workshop for providing us
with this unique opportunity to trial our approach and for their useful advice on this
paper. We also thank Alistair Mavin for playing with us and reviewing the paper.

Part of this work is sponsored by the Walloon Region under the European Regional
Development Fund (ERDF).

127

REFSQ 2012 Workshop Proceedings

6. References

[1] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, ‘Scenarios in system development:
current practice’, IEEE Software, vol. 15, no. 2, pp. 34–45, Apr. 1998.

[2] N. Maiden and A. Gizikis, ‘Where do requirements come from?’, Software, IEEE, vol.
18, no. 5, pp. 10–12, 2002.

[3] M. Hassenzahl, ‘Experience Design: Technology for All the Right Reasons’, Synthesis
Lectures on Human-Centered Informatics, vol. 3, pp. 1–95, Jan. 2010.

[4] M. Schrage, Serious play�: how the world’s best companies simulate to innovate. Boston
mass.: Harvard Business School Press, 2000.

[5] M. Mahaux, ‘Creativity, Collaboration, Sustainability | Martin’s Blog’. [Online].
Available: http://info.fundp.ac.be/~mma/wordpress/. [Accessed: 04-Apr-2012].

[6] N. A. . Maiden, S. Minocha, K. Manning, and M. Ryan, ‘CREWS-SAVRE: systematic
scenario generation and use’, in 1998 Third International Conference on Requirements
Engineering, 1998. Proceedings, 1998, pp. 148–155.

[7] B. Atasoy and J.-B. Martens, ‘STORIFY: a tool to assist design teams in envisioning and
discussing user experience’, in Proceedings of the 2011 annual conference extended abstracts
on Human factors in computing systems, New York, NY, USA, 2011, pp. 2263–2268.

[8] M. Mahaux, A. Mavin, and P. Heymans, ‘Choose Your Creativity: Why creativity means
different things to different people’, in Proc. REFSQ'12, Essen, Germany, 2012.

[9] M. Mahaux and N. Maiden, ‘Theater Improvisers Know the Requirements Game’, IEEE
software, vol. 25, no. 5, pp. 68–69, 2008.

[10] A. Hoffmann, ‘REIM - An Improvisation Workshop Format to Train Soft Skill
Awareness’, in To appear in Proceedings of CHASE’12, Zurich, Switzerland, 2012.

[11] M. Arvola and H. Artman, ‘Interaction walkthroughs and improvised role play’, Design
and semantics of form and movement, p. 42, 2006.

[12] L. Gongora, ‘Exploring creative process via improvisation and the design method
RePlay’, in Proceedings of the 1st DESIRE Network Conference on Creativity and Innovation
in Design, Lancaster, UK, UK, 2010, pp. 44–51.

[13] I. D. Sorby, L. Melby, and G. Seland, ‘Using scenarios and drama improvisation for
identifying and analysing requirements for mobile electronic patient records’, Requirements
Engineering for Sociotechnical Systems, pp. 266–283, 2005.

[14] S. Boess, ‘Making role playing work in design’, Design and semantics of form and
movement, p. 117, 2006.

[15] E. Brandt and C. Grunnet, ‘Evoking the future: Drama and props in user centered
design’, in Proceedings of Participatory Design Conference (PDC 2000), 2000, pp. 11–20.

[16] F. Marquis-Faulkes, S. J. McKenna, P. Gregor, and A. F. Newell, ‘Scenario-based
drama as a tool for investigating user requirements with application to home monitoring for
elderly people’, HCI International, Crete, Greece, 2003.

[17] N. Boulila, A. Hoffman, and A. Hermann, ‘Using Storytelling to Record Requirements:
Elements for an Effective Requirements Elicitation Approach’, in Proc. MERE’11, Trento,
Italy, 2011.

[18] K. Johnstone, Impro: Improvisation and the Theatre. Routledge, 1981.
[19] V. Spolin, Improvisation for the Theater 3E: A Handbook of Teaching and Directing

Techniques, 3rd ed. Northwestern University Press, 1999.
[20] M. Mahaux, O. Gotel, K. Schmid, A. Mavin, L. Nguyen, M. Luisa, and G. Regev,

‘Factors Influencing Collaborative Creativity in Requirements Engineering: Analysis and
Practical Advice.’, submitted to RE'12.

128

Creativity in Requirements Engineering (CreaRE)

5 Requirements Prioritization for Customer Oriented Software
Development (RePriCo)

Editors

Georg Herzwurm
University of Stuttgart, Germany, herzwurm@wi.uni-stuttgart.de

Wolfram Pietsch
Aachen University of Applied Sciences, pietsch@fh-aachen.de

Workshop Programme

 Introducing RePriCo’12
Georg Herzwurm, and Wolfram Pietsch

130

 Supporting Practitioners in Prioritizing User Experience Requirements
Pariya Kashfi, Agneta Nilsson, and Robert Feldt

133

 Requirements Prioritization by Using Requirements Relations
Constanze Kolbe

139

 Achieving Consensus in Requirements Engineering from the Viewpoint of Discourse Ethics
Alexander Rachmann

153

 Requirements Negotiation in Consideration of Dynamics and Interactivity
Andreas Reiser, Benedikt Krams, and Mareike Schoop

163

 Tackling Prioritization in Business-Process-Driven Software Development
Norman Riegel, Joerg Doerr, and Oliver Hummel

175

REFSQ 2012 Workshop Proceedings

129

Introducing RePriCo’12

Georg Herzwurm1, Wolfram Pietsch2

1 Department for Business Administration and Information Systems, esp. Business Software,
Universität Stuttgart, Keplerstr. 17, 70174 Stuttgart, Germany

herzwurm@wi.uni-stuttgart.de
2 Business Management, International Sales and Service Management

Aachen University of Applied Sciences, Eupener Str. 70, 52066 Aachen, Germany
pietsch@fh-aachen.de

1 Conception and workshop content

RePriCo’12 represents the 3rd Workshop on Requirements Prioritization for customer
oriented Software Development (RePriCo’12) held at the 18th International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ2012).

The workshop served as a platform for the presentation and discussion of new and
innovative approaches to prioritization issues for requirements engineering with a
focus on customer orientation.

As far as prioritization is an essential task within requirements engineering in order
to cope with complexity and to establish focus properly two perspectives can be iden-
tified:

� From a formal standpoint of view prioritization is merely a matter of choice of the
right specification method and granularity of analysis.

� From a practical perspective it is a matter of customer orientation also: consensus
must be achieved about the appropriateness of requirements from the view of the
customers and fed back into the process.

From our point of view customer orientation means a strategy for the selection of
action alternatives, which gives the target “satisfaction of customer needs” the highest
preference. Therefore requirements prioritization methods and approaches are not
limited to bespoke software but affect standard software also.

We are glad about holding RePriCo’12 for the third time at REFSQ in Essen: in
2010 ambitious participants from research as well as industrial practice discussed two
full research papers and four position papers in an open-minded and pleasant atmos-
phere; in 2011 four submissions were accepted as full research papers and one sub-
mission as short paper for the discussion during the workshop.

RePriCo’12 attracted 9 submissions. Each submission was reviewed by three ex-
perts of the program committee (chairs and/or members). The members of the organ-
izing committee assigned reviewers to each submission depending on the research and
practical background of each reviewer matching to the title and abstract of each sub-
mission. To avoid any conflict of interest the organizing committee took care of not to
assign more than one reviewer to a submission who might know one of the authors of

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

130

a submission personally. To identify excellent papers first the rating scale within the
conference system EasyChair was used: an overall rating by each of the three review-
ers weighted by the reviewer’s confidence led to a ranking of all submissions. Sec-
ondly, subject to time and slots available for a half-day workshop depending on the
length of a submission, the chairs of the program committee turned the balance to
accept or to reject a submission. Therefore especially the matching of a submission to
the workshop topics was taken into account. Finally, three submissions were accepted
as full research papers and two submissions as short papers.

The submissions comprise current research findings from various fields: prioritiza-
tion of user experience requirements to support practitioners (Pariya Kashfi, Agneta
Nilsson, Robert Feldt); prioritization of requirements by using requirements relations
(Constanze Kolbe); discussion of consensus in requirements engineering from the
viewpoint of discourse ethics (Alexander Rachmann); tool-supported requirements
prioritization and negotiation in consideration of dynamics and interactivity (Andreas
Reiser, Benedikt Krams, Mareike Schoop); tackling prioritization in business-process-
driven software development (Norman Riegel, Joerg Doerr, Oliver Hummel).

Results of our workshop evaluation (questionnaires filled out by all attendees)
showed, apart from a positive overall evaluation of the workshop, that the variety of
research findings and the following discussions pleased all participants.

We are convinced that the workshop was rewarding like 2010 as well as 2011 and
findings in these proceedings encourage researches as well as software developers,
requirements engineers or consultants to absorb new ideas and carry them out into
their daily work and research projects.

Our special thanks go to all speakers and participants for their contributions to the
workshop. Additionally, we would like to thank Samuel Fricker as REFSQ2012
workshop chair and Vanessa Stricker as REFSQ2012 organizational chair for their
professional support. Last but not least we thank Sixten Schockert and Benedikt
Krams for their effort in organizing RePriCo’12. We are confident in hosting RePriCo
in 2013 once more and are looking forward to welcoming many participants again.

2 Organization

2.1 Program Committee

Chair.
Prof. Dr. Georg Herzwurm, Universität Stuttgart, Germany
Prof. Dr. Wolfram Pietsch, Aachen University of Applied Sciences, Germany

Member.
Dipl.-Math. Peter Brandenburg, Vodafone D2 GmbH, Germany
Dr. sci. Math. Thomas Fehlmann, Euro Project Office AG, Switzerland
Dr. Andreas Helferich, Software Management Consultant, Germany
Priv. Doz. Dr. Andrea Herrmann, Infoman AG, Germany
Prof. Dr. Thomas Lager, Grenoble Ecole de Management, France

131

REFSQ 2012 Workshop Proceedings

Dipl.-Betriebswirt (FH) Olaf Mackert, SAP AG, Germany
Dipl. Wirt.-Ing. Waldemar Meinzer, Volkswagen AG, Germany
Priv. Doz. Dr.-Ing. Robert Refflinghaus, TU Dortmund University, Germany
Dipl.-Wirt.-Inf. Sixten Schockert, Universität Stuttgart, Germany
Prof. Dr. Klaus Schmid, University Hildesheim, Germany
Prof. Dr. Hisakazu Shindo, University of Yamanashi, Japan
Dipl.-Ing. Gerd Streckfuß, iqm Institut für Qualitätsmanagement, Germany
Prof. Dr. Yoshimichi Watanabe, University of Yamanashi, Japan

2.2 Organizing Committee

Dipl.-Kfm. (FH) Benedikt Krams, Universität Stuttgart, Germany
Dipl.-Wirt.-Inf. Sixten Schockert, Universität Stuttgart, Germany

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

132

Supporting Practitioners in

Prioritizing User Experience Requirements

Pariya Kashfi, Agneta Nilsson, Robert Feldt

Software Engineering Division

Department of Computer Science and Engineering

Chalmers University of Technology and Gothenburg University

pariya.kashfi,agnnil,robert.feldt@chalmers.se

Abstract. The success of, in particular, market-driven and customer-oriented

software systems is dependent on finding a proper balance among various quality

requirements. There is a gap in current theory and practice in prioritizing quality

requirements, especially those quality requirements that are not related to per-

forming a task or accomplishing a goal such as joy. To bridge this gap, a shared

understanding of these types of requirements is required. This paper includes a

review of the current theories, i.e. quality models in software engineering, and

user experience models in interaction design. We then present our results from

comparing models from each field. We conclude that the models are complemen-

tary, and can and should be merged to form a combined model. The model will

bring insight into prioritization by introducing various aspects of user experience,

its composing elements, and their functional relation.

1 Introduction

Researchers have emphasized prioritization of Quality Requirements (QR) in software

(SW) development. Nevertheless, guidelines and methods in gathering, prioritizing, and

documenting QRs are limited[1–5]. Especially for those QRs that are not related to

performing a task or accomplishing a goal, such as emotional connection, joy, curiosity,

and excitement. We refer to them as non-task-related or non-instrumental requirements,

as opposed to task-related or instrumental requirements. The history of studying non-

task-related requirements, or in a more general term User eXperience (UX), goes back

to the 90’s [6–9]. So far, within Software Engineering (SE), few studies have taken

UX into account. In fact, it can be argued that understanding and controlling UX is a

missing component in the current QR literature.

To properly include and prioritize UX requirements in SW development, it is neces-

sary for practitioners to understand UX and its composing elements. Practitioners need

to have knowledge on how to manage UX requirements, discover effects of other re-

quirements on UX, and accordingly prioritize the requirements. To provide a white-box

view and a shared understanding of UX, the first step in our research is to study the

existing models and investigate their potential to support practitioners in prioritizing re-

quirements. This paper reviews related theories in SE, and Interaction Design (ID), the

latter being the leading field for UX research (Sects. 2, 3). It identifies relevant SW qual-

133

REFSQ 2012 Workshop Proceedings

ity models, and UX frameworks1, selects two, and compares and contrasts them from

practitioners’ perspective (Sect. 3). Finally, it discusses the implication of our findings

for requirements prioritization, and future research (Sect. 4).

2 Related Work

Ultimate success of SW as well as business goals, such as the market share, profit and

company image, will be reached by satisfying various user needs [10]. Task-related and

non-task-related user needs have been in focus for more than two decades in ID [6], but

not received much attention in SE. Requirements Engineering (RE) have evolved and

addresses part of task-related requirements but QRs, especially non-task-related QRs,

are still insufficiently supported [1, 3]. In particular, while usability is only one aspect of

UX, it has been discussed to be one of the QRs that are challenging to specify[3]. This

difficulty increases when dealing with other aspects of UX than usability. The challenge

in prioritizing UX requirements is that UX is related to various functional, and QRs, e.g.

a certain interface performance requirement might not be motivated by its effect on the

task at hand but on the frustration its non-fulfillment would have on the user.

Hassenzahl et al. [11] define UX as “a consequence of a user’s internal state (pre-

dispositions, expectations, needs, motivation, mood, etc.), the characteristics of the de-

signed system (e.g. complexity, purpose, usability, functionality, etc.) and the context

(or the environment) within which the interaction occurs (e.g. organizational/social set-

ting, meaningfulness of the activity, voluntariness of use, etc.).” A related concept in SE

is Quality in Use (QiU) that according to ISO25010 [12] is “the degree to which a prod-

uct or system can be used by specific users to meet their needs to achieve specific goals

with effectiveness, efficiency, freedom from risk and satisfaction in specific contexts of

use.” ISO25010 also defines Product Quality (PQ). PQ relates to static properties of

software and dynamic properties of the computer system and their influences on QiU.

ISO25010 is an extension to ISO9126 [13] that included Internal and External Quality

(I&EQ) models (combined in ISO25010 to form PQ), and QiU.

Even though QiU model does not include any definition, or direct reference to UX,

it has been applied in the context of UX by SE researchers. For instance, Doerr et

al. [14] tried to discover the relationship between I&EQ and UX that in their view

was equivalent to QiU in ISO9126. From a prioritization perspective, such studies can

bring knowledge on how different requirements affect each other, and result in more

informed decisions in RE. In a later study in 2007 [15], Doerr et al. suggested using a

questionnaire in RE, to prioritize the product features and improve the product’s UX. In

addition, they proposed a SW quality model named AMUSE (Appraisal and Measure-

ment of User Satisfaction). Prioritizing UX requirements and considering the effect of

other requirements on UX is to some extent covered in AMUSE study. In 2006, the FUN

project started with focus on pattern-based approaches in developing SW with positive

UX [16]. FUN is based on a quality model called e4FUN [17]. One of the results of

FUN is KREA-FUN workshop [17], a systematic approach to improve the joy-of-use.

The method helps in eliciting UX related requirements, but also prioritization. Among

1 The terms “model” and “framework” are used interchangeably in this paper.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

134

other steps, the method includes evaluating and rating various requirements. There are

other studies related to UX in SE including [18–22]. Although these studies do not

touch prioritization, they cover various concepts related to UX such as emotional re-

quirements, user motivations, user values, user stories, and so on.

In summary, there have been few research efforts related to UX in RE in general, and

prioritization in particular. For a background to prioritization of quality requirements,

we refer to [1]. In a recent study [2] practitioners listed usability as a key QRs but

used no or ad hoc methods in prioritization of QRs. To our knowledge, prioritization

literature does not go beyond usability [1–4], and non-task-related aspects of UX remain

untouched. Finally, since there is little support even for the definition and description of

UX requirements, it has never been directly addressed in prioritization methods.

3 Preliminary Results

As the initial step in providing a shared understanding of UX for practitioners, this sec-

tion reviews a number of UX frameworks, and compares and contrasts two models one

from SE and ID respectively to identify their strength and weaknesses from practition-

ers’ perspective.

First, it is important to specify a definition of UX that is understandable for prac-

titioners. Even in ID, there is not yet a widely accepted definition of UX [6, 23]. Af-

ter reviewing the current UX definitions, we chose the definition by Hassenzahl and

Tractinsky [11] (see Sect. 1). The definition includes the influencing factors on UX, i.e.

user, product and context, and provides examples of each factor, which we find supports

a better understanding.

Some frameworks view UX as a holistic concept that cannot be divided into objec-

tive elements. Others try to find objective elements that influence UX, hence make it

possible to consider UX in designing SW. Among the existing frameworks, the most

clear and comprehensive ones in our view are as follows.

Hassenzahl’s framework [7] is based on his categorization of product attributes, i.e

pragmatic and hedonic. Hassenzahl defines hedonic quality as “a quality aspect that

addresses human needs for social power, novelty and change” [23]. On the other hand,

pragmatic aspects are related to instrumental qualities of a product [7]. This framework

includes both designer’s, and user’s perspectives.

Zimmermann’s framework [6] is an integration and extension of other frameworks,

in particular Hassenzahl’s. The framework includes three phases of experience, sensory
encounter, interaction phase and evaluation phase. In contrast to Hassenzahl that con-

siders both designer’s and user’s perspectives, Zimmermann only focuses on the user’s

perspective. Also, while Zimmermann indicates the role of product features in UX, the

model seems to be missing that aspect.

Mahlke’s framework, hereafter UXF, has four composing blocks (i) theoretical con-

siderations (ii) methodological contributions (iii) empirical studies (iv) recommenda-

tions for the development of interactive systems. UXF includes Hassenzahl’s hedonic

and pragmatic quality aspects, and considers the influence of product features, use, and

context characteristics on UX. UXF includes three UX components (i) perception of

instrumental qualities (ii) perception of non-instrumental qualities (iii) emotional user

135

REFSQ 2012 Workshop Proceedings

reactions, and their interrelation. One strength of UXF compared to Hassenzahl’s is the

division of the categories of instrumental, non-instrumental and emotion-related quality

aspects into sub-dimensions which makes measurement of those aspects easier. Consid-

ering its strengths, we have chosen UXF for our research.

(a) Identified overlaps (b) Our research process

Fig. 1: Overlaps in the models on a conceptual level; and the research process

Comparison to Quality models

For providing a shared understanding of UX for practitioners, we compare ISO25010

and UXF. We have chosen ISO25010 for this comparison because it is the latest model

presented, has the status of a standard, and often cited as important by practitioners.

We drew the comparison with a focus on the questions (i) which types of SW quali-

ties are included? (ii) which perspectives in analyzing UX are considered? (iii) which

components, or influencing factors are defined for UX?

ISO25010 focuses on defining and evaluating quality requirements of SW, while

UXF focuses on design for positive UX, and evaluating the design. UXF provides a

clear distinction between instrumental, and non-instrumental qualities, while in ISO25010,

PQ and QiU have overlaps in this regard. In Mahlke’s view, what eventually influences

UX is how a user perceives different qualities of the SW. In contrast, ISO25010 con-

siders only the developer’s point of view and does not include user’s point of view. On

the other hand, the focus on user’s view has made UXF more difficult to understand

for practitioners. The two models have the same definitions, or consider the same com-

posing elements for some concepts such as usability, learnability and efficiency. This

indicates an overlap as depicted in Fig. 1a. The area marked A shows an overlap be-

tween instrumental qualities in UXF and the models in ISO25010. A is bigger than B

since we found more similarities between these models in instrumental compared to

non-instrumental aspect of qualities. The comparison is summarized in Table 1.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

136

Aspect ISO25010 UXF

Instrumental qualities strong weak

Non-instrumental qualities weak strong

Emotional user reactions missing strong

Influences on interaction weak strong

User’s perception missing strong

Designer’s perspective weak weak

UX consequences missing strong

Methodological contribution missing weak

Empirical contribution missing weak

Table 1: Comparison between ISO25010 and Mahlke’s framework.

4 Discussion and Conclusion

Our findings imply that there is limited support to deal with non-task-related require-

ments, and understanding of UX is generally shallow in SE. In SE, UX is treated the

same as other QRs. While providing an opportunity to benefit from the existing advice

on measuring various quality characteristics in SE, and to some extent influence UX

during SW development, this leads to a narrow view on UX since not all aspects of

UX have been covered in the existing quality models. This makes it harder not only

to prioritize UX requirements but also to discuss and trade-off requirements in general

considering the dependency of UX to different functional and QRs.

Hence, there is a need for a framework that supports these issues, and makes them

tangible and understandable for practitioners. Based on our study, such a framework

should include various aspects of UX, definitions of key UX elements, and their func-

tional relations. Therefore the framework will support prioritizing among UX require-

ments as well as in relation to other requirements.

Future plans are to develop a framework as depicted in Fig. 1b. We believe any sup-

port provided for practitioners should have a strong theoretical basis, and we find the ex-

isting theories complementary. The weaknesses in the current models can be overcome

by merging them. For instance, the new framework should consider both developer’s,

and user’s perspectives, it should provide details on non-instrumental, and emotion-

related qualities, and consider factors influencing UX, and the consequences of UX on

user’s decisions and interactions. Also, there is a need to find the barriers in current

RE practices, and provide guidelines and methods for how to improve them. Only then

can we support prioritization of not only UX requirements but develop prioritization

methods that cover the whole range of requirements required for long-term success.

References

1. R. B. Svensson, M. Host, B. Regnell, Managing Quality Requirements: A Systematic Re-

view, in: 2010 36th EUROMICRO Conference on Software Engineering and Advanced Ap-

plications, Ieee, 2010, pp. 261–268.

137

REFSQ 2012 Workshop Proceedings

2. R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R. Feldt, A. Aurum, Prior-

itization of quality requirements: State of practice in eleven companies, in: 19th International

Requirements Engineering Conference, IEEE, pp. 69–78.
3. L. Chung, J. do Prado Leite, On Non-Functional Requirements in Software Engineering, Vol.

5600 of LNCS, Springer Berlin / Heidelberg, 2009, pp. 363–379.
4. R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R. Feldt, Quality

Requirements in Industrial Practice -An Extended Interview Study at Eleven Companies,

IEEE Transactions on Software Engineering (2011) 1–14.
5. M. Glinz, On Non-Functional Requirements, in: 15th IEEE International Requirements En-

gineering Conference (RE 2007), IEEE, 2007, pp. 21–26.
6. P. G. Zimmermann, Beyond Usability–Measuring Aspects of User Experience, Ph.D. thesis

(2008).
7. M. Hassenzahl, The thing and I: understanding the relationship between user and product,

Funology: from usability to enjoyment (2003) 31–42.
8. P. W. Jordan, Designing Pleasurable Products: An Introduction to New Human Factors, Tay-

lor & Francis, 2000.
9. S. Mahlke, User experience of interaction with technical systems, Ph.D. thesis, Berlin, Tech-

nical university (2008).
10. D. Kerkow, Don ’t have to know what it is like to be a bat to build a radar reflector-

Functionalism in UX, in: E. Law, A. P. Vermeeren, M. Hassenzahl, M. Blythe (Eds.), To-

wards a UX manifesto, COST294–MAUSE affiliated workshop, 2007, pp. 19–25.
11. M. Hassenzahl, N. Tractinsky, User experience – a research agenda, Behaviour & Informa-

tion Technology 25 (2) (2006) 91–97.
12. ISO25010, Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – System and software quality models, Vol. 2011, International

Organization for Standardization, Geneva, Swiss, 2011.
13. ISO9126, Software engineering - Product quality, Tech. rep., International Organization for

Standardization, Geneva, Swiss (2001).
14. J. Doerr, D. Kerkow, Total control of User Experience in Software Development – a Software

Engineering dream?, in: E. Law, E. Hvannberg, M. Hassenzahl (Eds.), Proceedings of the

The Second COST294MAUSE International Open Workshop User ExperienceTowards a

Unified View, 2006, pp. 94–99.
15. J. Doerr, S. Hartkopf, D. Kerkow, D. Landmann, P. Amthor, Built–in User Satisfaction –

Feature Appraisal and Prioritization with AMUSE, 15th IEEE International Requirements

Engineering Conference (RE 2007) (2007) 101–110.
16. FUN project (2006). URL http://fun-of-use.org/
17. D. Kerkow, C. Graf, KREA-FUN : Systematic Creativity for Enjoyable Software Applica-

tions, in: FUN 2007 Proceedings: Workshop for Design Principles for Software That Engages

Its Users and Facing Emotions: Responsible Experimential Design, 2007.
18. D. Callele, E. Neufeld, K. Schneider, An Introduction to Experience Requirements, 2010

18th IEEE International Requirements Engineering Conference (2010) 395–396.
19. D. Callele, E. Neufeld, K. Schneider, Emotional Requirements, IEEE Software 25 (1) (2008)

43–45.
20. N. Maiden, Requirements and Aesthetics, IEEE Software 28 (3) (2011) 20–21.
21. A. Sutcliffe, Emotional requirements engineering, in: 2011 IEEE 19th International Require-

ments Engineering Conference, IEEE, 2011, pp. 321–322.
22. D. Bolchini, J. Mylopoulos, From Task-Oriented to Goal-Oriented Web Requirements Anal-

ysis, in: Proceedings of the Fourth International Conference on Web Information Systems

Engineering, WISE ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 166—-.
23. M. Hassenzahl, The Effect of Perceived Hedonic Quality on Product Appealingness, Inter-

national Journal 13 (4) (2001) 481–499.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

138

Requirements Prioritization by
Using Requirements Relations

Constanze Kolbe1

1RIF e.V.
Joseph-von-Fraunhofer Str. 20,

44227 Dortmund, Germany
constanze.kolbe@rif-ev.de

Abstract. During the planning process a customer utters a variety of require-
ments on a product and specifies them. Between the super-ordinated and their
detailing requirements vertical relations do occur, which leads to the establish-
ment of a requirements hierarchy. At the same time relations (e.g. conflicting,
supporting relations) do occur between these requirements on each hierarchy
level.

During the prioritization of requirements, requirements relations must be
taken into account. Horizontal relations enable on the one hand to deliberate
about whether an absolute weighting will be sufficient or weather a relative
weighting of requirements which belong to the same level is necessary to heigh-
ten the precision of a weighting. This enables the reduction of weighting effort.

Vertical requirement relations help to identify inconsistencies between the
weight of a super-ordinated requirement and the weightings of their detailing
requirements. A computer-aided procedure will be presented, that uses require-
ment relations, in order to support the prioritization of stated requirements.

Keywords: prioritization, requirements, requirements relations

1 Introduction

In the context of the product planning process customer requirements and their
weightings have to be captured [1]. By means of priorities requirements can be sorted
into a ranking. This enables to handle with resources stringency and to avoid the rea-
lization of needless product characteristics. The customer further specifies his stated
requirements, so that in each case a new requirements level emerges [2]. Require-
ments of a new established level also have to be weighted by the customer.

One problem of requirements prioritization is that the whole weighting process can
become very work-intensive. The more precisely the weighting of requirements must
be, the more complex is the weighting process. In some cases, a high accuracy of
weighting of a requirement is not needed, as their influence on the overall result of the
planning process is only low. If the weightings of those requirements are nonetheless
determined very precisely, an unnecessary effort during the weighting process arises.

139

REFSQ 2012 Workshop Proceedings

At the same time, it should be determined which requirement weightings have to
be very precise, because they mostly influence the result of the planning process.
Regarding conflicting requirements the requirement weighting is an important aspect
during their translation into adequate product characteristics [3], thus a higher accura-
cy of their weightings is necessary.

Due to weighing errors of the customer, there is a risk that the weight of the supe-
rordinated requirement and the weightings of its detailing requirements are not consis-
tent with each other. Possible errors remain undetected, if inconsistencies concerning
the vertical direction are not taken into account. This could have a negative impact on
the planning process and could lead to a noncompliance of the product characteristics
with the imaginations of customer. A possible inconsistency concerning the vertical
direction occurs e.g. when an extreme important requirement is concretized with an
amount of unimportant requirements. In this case either an incompleteness of detail-
ing requirements is given or there exists an over-estimation of the super-ordinated
requirement or an under-estimation of the detailing requirements.

In order to solve the mentioned problems, requirements relations have to be consi-
dered during the requirements prioritization. In section 2 different types of require-
ment relations will be presented. It will be described which ones have to be consi-
dered in order to handle the mentioned problems during the weighting process.

2 Types of Requirements Relations

While setting and refining requirements, the requirement model shown in figure 1 is
set up. The model will be extended and detailed during the whole development
process and is the basis for a structured transferring of requirements into concrete
product characteristics [4]. It consists of three dimensions [5]: The first dimension
shows the transition of abstract requirements to detailing requirements. The second
dimension is the classification of content of requirements. The content-related struc-
turing of requirements into the categories „obligations“, „surroundings“, „economy“,
„information“, „qualification“ and „technical-functional aspects“ according to [6] can
be used as the classification of contents of the requirements within the requirements
model. The third dimension is the completeness and disjunction of requirements and
their relations.

According to [2], [5], [7], [8], [9], and [10], existing approaches for structuring of
requirement relations concerning their direction distinguish between horizontal and
vertical requirement relations (fig. 1).

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

140

Fig. 1. Dimension of the requirement model [following 5]

In order to receive an overview of the product that has to be developed, at the begin-
ning of a planning process abstract, and hence, imprecise requirements are gathered
[11]. When a customer specifies his given requirements by means of detailing re-
quirements, vertical requirements relations (concretization relations) do occur be-
tween them [2], which leads to the establishment of a requirements hierarchy [2]. In
figure 1, the most abstract requirements are located on the 1st level and on the 2nd
level the detailing requirements of the requirements belonging to 1st level are located.
The requirements of 1st level are substituted by the requirements of 2nd level. Thus,
vertical relations give information about which requirement details another require-
ment and for which requirements a consistency analysis in vertical direction has to be
performed. During the consistency analysis it can be ascertained whether the weight
of a super-ordinated requirement and the weightings of its detailing requirements of
the next level are consistent with each other or whether weighting errors do exist.

Horizontal requirement relations are not caused by concretization of an abstract
requirement but arise when requirements being on the same level of abstraction are
set in relation to each other [9] and interact by technical and logical dependencies
[12], [2]. They occur for example because of technological risks, or if a requirement
has a high influence on requirements on the implementation costs of the product cha-
racteristics. Together with the requirements hierarchy horizontal relations constitute a
requirements model. These horizontal relations become more concrete on each further
level and will be substituted by the relations of the next lower level. Horizontal rela-
tions can be divided concerning their sort of effect into the following types: “compet-
itive” (the fulfillment of a requirement negatively influence the fulfillment of another

classification of content

completeness/disjunctability

de
ta

il

ab

st
ra

ct
io

n

range of functions

maintainability

flexibility

….

1st level

2nd level

3th level

horizontal relation

requirement vertikal relation

-

++ ---

-

+ supporting relation

- competitive relation

141

REFSQ 2012 Workshop Proceedings

requirement) and “supporting” (the fulfillment of a requirement supports the fulfill-
ment of another requirement) [10]. For identifying requirement relations the know-
ledge-based methods for an automatic computer-aided identification of concretization
as well as supporting and competitive relations developed in [13], [14], [15] are suita-
ble. Due to these computer-aided methods requirement relations can be automatically
identified with low effort.

By means of horizontal relations it can be determined, which part of the require-
ments has to be weighted with a high precision and for which part a less precise
weighting is acceptable. Due to that, a requirement weighting on the horizontal level
can be carried out goal-oriented and with reduced effort.

Concerning requirements, which are connected to each other over conflicting rela-
tions, often compromises are needed during their realization. Conflicting requirement
relations give an indication that the accuracy of the associated requirements weight-
ings should be quite high, as they have a strong influence on the results of the plan-
ning process.

In the case a requirement does not have any horizontal or only a supporting hori-
zontal relation to other requirements, it can be assumed that, this requirement does not
need to be weighted very precisely. The reason for that is that during the selection of
product characteristics in planning process, the identified requirements will not be in
competition against each other, what means that between those a compromise must
not be reached later.

There already exist different approaches to prioritise requirements of a require-
ments model. They can mainly be divided into absolute and relative weighting. In the
following the approaches will be presented and their advantages and disadvantages
will be shown.

3 Absolute and Relative Weighting

The easiest form of requirement weighting is the absolute weighting where the cus-
tomer uses a rating scale (here: 1 to 5) to weight each of his requirements without
setting them in relation to one another (Fig. 2) [16].

Fig. 2. Absolute weighting using rating scale

The advantage is that the priorities can be established with little effort. Furthermore,
the customer needs to define a weighting between “unimportant” (1) and “extremely
important” (5) for each requirement (fig. 2), which allows an analysis of consistency
concerning the vertical direction within the requirements hierarchy. Thereby, a possi-
ble over- or under-estimation of requirements can be detected. The disadvantage of an
absolute weighting is that the results are not very precise, because a requirement is not

1
unimportant

2
rather

unimportant

4
very

important

5
extremely
important

3
important

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

142

compared to another requirements during the prioritization. This creates the danger
that e.g. the first of two conflicting requirements wrongly receives a lower weighting
than a second requirement, although the customer would have prefer the first re-
quirement in the framework of a direct comparison. Due to that, an absolute weight-
ing is only for this part of requirements sufficient, for which a high accuracy of priori-
tization is not needed, and thus for requirements with a low overall importance as well
as for requirements with a supporting or without any relation to other requirements.

A further form of requirement weighting is the relative weighting by means of
paired comparison in which a requirement is compared with other requirements (2: is
more important than; 1: equally important; 0: less important) [17]. Contrary to the
absolute weighting, the relative weighting achieves more precise results. The disad-
vantage of a relative weighting is a fast-growing complexity [17], as each requirement
has to be compared with each other requirement. The relative weighting is only
worthwhile for requirements, whose accuracy of the weightings must be quite high as
it is the case for requirements which are not of an overall unimportance and with a
conflicting relation to other requirements.

A method that uses relative weightings in order to prioritize a requirements hie-
rarchy is named analytic hierarchy process (AHP). Using this method, requirements
of the same level, which do refine together the same super-ordinated-requirement of
the next superior level, are relatively weighted in a paired comparison [18]. With it,
requirements, which do refine different super-ordinated requirements, are not com-
pared to each other during their weighting. In case when these both requirements do
compete with each other, the customer is not able to consider their relative weightings
to each other, although exactly this information is the most important aspect when
dealing with conflicts of requirements realization. One further problem is that rela-
tions between requirements belonging to one hierarchy level are not admissible in the
framework of AHP.

In contrast to AHP, the prioritization method analytic network process (ANP) con-
siders requirements relations, during the relative weighting of requirements [19].
However, the disadvantage of AHP and ANP is that the above mentioned analysis of
consistency concerning the vertical direction cannot be performed. The reason for this
is that relative and not absolute weightings are assigned to the requirements of a hie-
rarchy or network. Due to that, the customer is not able to interpret a relative
weighted requirement, because a relative weighting does not express if a requirement
is unimportant or extremely important, as it is the case with an absolute weighting on
a scale from 1 (unimportant) to 5 (extremely important) (fig. 2). Thus, an under-or
over-estimation of requirement´s weightings cannot be detected when using relative
weightings.

The aim of this research is to develop a procedure for the performance of a re-
quirements weighting, which uses requirements relations, in order to utilize both the
advantages of the absolute and the advantages of the relative weighting. By means of
these procedure inconsistencies within the vertical direction concerning a possible
incompleteness or an over- or under-estimation of requirements should be detected.
Furthermore, the procedure has to give the information, when the allocation of abso-
lute weightings (from 1 to 5) to requirements will be sufficient or when the effort of

143

REFSQ 2012 Workshop Proceedings

an additional relative weighting is worth. Therefore the procedure has to consider the
information about supporting and conflicting relations between requirements. Goal is
an appliance of the procedure with a low workload. To achieve this goal the proce-
dure has to be implemented in the forms of a software component, which enables an
automatic execution of the procedure.

4 Using Requirements Relations During the Prioritization
Process

In the following, the single steps of the new developed procedure for requirement
prioritization (prioritization analysis) will be presented. Thereby, it is shown how the
identification of requirement relations described in chapter 2 can be used to support
the prioritization. The proceeding will be applied by capturing requirements on a con-
tinuous conveyor in manual commissioning of a pharmaceutical trade. These re-
quirements are formulated and weighted by a logistics expert who is an employee of a
trade company in Germany.

Within figure 3 the steps of the developed procedure is presented.

Fig. 3. Steps of prioritization analysis

The requirements on 1st level of the requirements model (figure 1) have to be
weighted in the first step. In a second step, the 2nd level of the model will be
weighted. Afterwards, in step 3, the weightings of the 1st and 2nd level are set in
relation to each other and a consistency analysis concerning the vertical direction will
be carried out. During this check a possible incompleteness of detailing requirements
and an over- or under-estimation of requirements belonging to both levels can be
detected. In step 4, the 3rd level will be weighted and compared with 2nd level in
context of a consistency analysis concerning the vertical direction (step 5). So the
procedure changes between the requirement weighting on horizontal level and the
weighting of requirements connected via vertical relations of two levels (figure 3) till
the very bottom level of the requirement model is reached.

1st level

3th level

n-th level

step 1:
Prioritization on 1st level

step 3:
consistence analysis

2nd level

…

…

step 2:
Prioritization on 2nd level

step 5:
consistence analysis

step 4:
Prioritization on 3th level

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

144

4.1 Prioritization Analysis in Horizontal Direction

During the prioritization analysis in horizontal direction at first conflicting require-
ments of one hierarchy level have to be weighted relatively to one another, in order to
thus achieve a ranking of those requirements. Subsequently the whole amount of re-
quirements of one level has to be prioritized by means of absolute weightings. The
additionally absolute weighting of already relatively weighted requirements is there-
fore necessary to set them in relation to the remaining not-relatively weighted re-
quirements and to carry out the named consistence analysis in vertical direction.

Steps of the Analysis in Horizontal Direction.

1. Relative Weighting Regarding Conflicting Relations between Requirements.
In figure 1, conflicting requirements are demonstrated on the 1st and 2nd level by
using the sign “-“. The conflicting requirements identified by the software component
are presented to the customer. The customer has to detect those of these requirements
which are in his opinion of a low overall importance. These requirements do not need
to be assigned with weightings having a high precision, because a trade-off between
them does not have a high influence on the customer satisfaction. They must therefore
not relative weighted; instead an absolute weighing is sufficient. The remaining con-
flicting pairs of requirements are weighted relatively by the customer. Thus the con-
flicting requirements and also partly requirements having no or a supporting relation
to other requirements as well as unimportant but conflicting requirements, are brought
into a ranking.

2. Absolute Weighting of all Requirements.
The requirements ranking received within step 1 is basis for the following step two.
Within this step 2 the customer has to assign absolute weightings to all requirements
of one level. In doing so, the absolute weightings are not allowed to be contradicting
to the previously established ranking of requirements (step 1).

For the remaining requirements which cannot be ordered by relative weighting the
absolute weightings are intuitively allocated by the customer without comparing them
with other requirements. In comparison to the direct absolute weighting (without
paired comparison), the advantage of this approach is that a ranking of conflicting
requirements has been established by means of paired comparison before assigning
absolute weights to those requirements (step 2). Additionally, the gained information
about the relative weightings can be considered during the planning process as soon
as a decision for or against product characteristic has to be taken, for which the rela-
tive weighting between conflicting requirements is significant.

Application of the Analysis in Horizontal Direction.
An example for conflicting requirements captured from the logistics expert is given in
figure 4.

145

REFSQ 2012 Workshop Proceedings

1. Relative Weighting Regarding Conflicting Relations between Requirements.

Fig. 4. Weighting of competitive requirements

Concerning this conflicting requirements a paired comparison has been performed by
the logistics expert (fig. 5).

Fig. 5. Relative requirement weighting

In order to show the effect of the developed procedure, the recorded conflicting re-
quirements at first were weighted intuitively with absolute weightings and without a
paired comparison by the logistics expert. Some weeks later the logistics expert has
once again weighted those conflicting requirements with the difference that the devel-
oped proceeding was applied. The result of the comparison of the intuitive weighting
which was done before via absolute weighting (ranking before) and the relative
weighting (ranking afterwards) are shown in figure 6. With an intuitive weighting
with absolute values the requirement for “flexibility” was at the ranking’s top and
after relative weighting this requirement has taken the lowest standing. The “range of
functions”, which is according to relative weighting the most important requirement,
has only been on the second place after a first absolute weighting. With the competing
requirements it was shown that “flexibility” is not more important than “complexity”
(ranking before) but both are equally weighted. Furthermore, it became clear that the
“maintenance costs” are not more important (ranking before) but as important as the
“range of functions” So only by paired comparison the logistics expert could get an
overview of the requirements whose relative weightings are the determining factor of
the result of planning process.

continuous conveyor

flexibility

yes

continuous conveyor

complexity

low

continuous conveyor

range of functions

high

continuous conveyor

maintenance effort

low

-
-

-

co
m

pl
ex

ity
/ lo

w

m
ai

nt
en

an
ce

ef
fo

rt/
 lo

w

flexibility/high 1

range of functions/high 2 1

2…more important
1…equally important
0…less important

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

146

Fig. 6. Comparison of intuitive and relative weighting

2. Absolute Weighting of all Requirements Belonging to one Level.
By paired comparison in step 2, not only conflicting requirements but also partly un-
important conflicting requirements as well as requirements having no or a supporting
relation, are indirectly ordered by the procedure. Although a high “flexibility” and a
high “range of functions” are not in competition with each other (figure 6), the soft-
ware component can derive that the “range of functions” is in a higher position than
the “flexibility”. The logistics expert confirmed that the new ranking achieved by the
new developed procedure stronger represents his needs than the ranking resulted by
intuitive allocation of absolute weightings a few weeks before. This order is basis for
the customer’s allocation of absolute weightings which is now following in the
framework of the developed procedure. With this priority order by relative weighting
the logistics expert finally has weighted the “range of functions” and the “mainten-
ance effort” with the absolute weighting 4 and the “flexibility” and “complexity” with
the absolute weighting 2 (figure 6).

4.2 Prioritization Analysis in Vertical Direction

Inconsistencies (in vertical direction) concerning the weightings of a super-ordinated
requirement and its detailing requirements can be detected by means of vertical re-
quirement relations. Therefore, after finishing the prioritization of a requirements
level a consistence analysis to the super-ordinated requirement level has to be per-
formed (figure 3). During the analysis of consistence it will be ascertained if an in-
completeness of detailing requirements exists or if an under- or over-estimation of the
requirements and their weightings can be assumed. Thereby, the customer can once
again think over his prioritization and if necessary correct them. To check the consis-
tence of those requirements the software component has to identify requirements
which are connected to a super-ordinated requirement via vertical relations. The
weightings of those detailing requirements then are compared with the weighting of
the super-ordinated requirement.

Steps of the Analysis in Vertical Direction.
Within the consistence analysis the software component (performing the developed
procedure) has to check the criteria shown in figure 7. While doing so in each case the

Ranking before (absolute and intuitive weighted)

Ranking afterwards (relative weighted)

range of functions (absolute weight 4), maintenance effort (absolute weight 4)

flexibility (absolute weight 2), complexity (absolute weight 2)

flexibility (absolute weight 4) , maintenance effort (absolute weight 4)

range of functions (absolute weight 3)

complexity (absolute weight 2)

147

REFSQ 2012 Workshop Proceedings

weight of one super-ordinated is compared with the weightings of its detailing re-
quirements. First, the maximum of weightings of the detailing requirements has to be
identified (criterion 1). If the maximum is the same as the weighting of the super-
ordinated requirement, no inconsistence can be identified, because the weightings of
the super-ordinated requirement and the weightings of its detailing requirements do
have a sufficient similarity. In this case the prioritization analysis will be finished at
this point concerning the considered super-ordinated requirement.

Fig. 7. Consistence analysis regarding vertical relations

If criterion 1 is not valid, the software component has to check whether the maximum
weight of the detailing requirement’s weighting is lower than the weighting of the
super-ordinated requirement (criterion 2). If this is the case, this can be an indicator
that further important detailing requirements are missing or that the super-ordinated
requirement is weighted as too important or the detailing requirement as too unimpor-
tant. The weighting appropriately has to be corrected by the customer and the prioriti-
zation analysis will be performed again by the software component until an inconsis-
tence cannot be proven anymore. If criterion 2 is not fulfilled, in the following the
software component has to check (criterion 3) whether the minimum weighing is
higher than/ equal to the super-ordinated weighting. In this case, it can be an evidence
of an over-estimation of the detailing requirements or an under-estimation of the su-
per-ordinated requirement.
If criterion 3 does not fit, criterion 4 has to be proven. This happens by establishing
the difference between the arithmetic mean of the weightings of the detailing re-
quirements and the weighting of the super-ordinated requirement. This results in the
extent of similarity of those weightings towards each other, which helps to identify a
possible inconsistence. If the average is totally identical to the weighting of the super-
ordinated requirement or if it is quite similar to it, an inconsistence cannot be con-

necessary degree of
similarity

(e.g. - 0,5 < x < 0,5)

max.weight of WD = WS

max. weight of WD < WS

evidence of over-estimation
of detailing requirments

or under-estimationof the
super-ordinatedrequirement

no

yes

yes

WS - arithmetic average of WD =

no
(e.g. - 0,5 > x)

no evidenceof
inconsistency

1

2

4

WS…weighting of the superordinatedrequirement
WD…weigthings of detailing requirements

min. weight of WD >= WS

no
(e.g. 0,5 < x)

evidence of incompleteness
of detailing requirements OR

over-estimationof super-
ordinated requirement or
under-estimation of the
detailling requirments

yes

yes

correction of
weightings

no

3

no

starting point

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

148

cluded. The necessary extend of similarity has to be determined in the requirements’
gathering process before. In the given example the extent of similarity must be be-
tween -0.5 and 0.5. If the value is lower than -0.5, the detailing requirements are over-
estimation or the super-ordinated one is under-estimated. The customer has to correct
it and the prioritization analysis has to be repeated by the software component. This is
the same, if the value is higher than 0.5 and incompleteness of detailing requirements
or an over-estimation of super-ordinated requirements is indicative.

Application of the Analysis in Vertical Direction.
Figure 8 shows a cutout of the requirements model of the logistics expert. The 1st
level consists of his requirement concerning a high “facilities' security” of the con-
veyor and the 2nd and 3th level consist of the detailing requirements of the 1st level.
The results of the prioritization analysis concerning the given cutout in vertical direc-
tion are given under „weighting before“. The weightings of the different levels have
been compared with each other, in order to thus check their consistency. It was found
that there exists a possible inconsistency between the 1st and the 2nd level.

The weighting of the “facilities' security” is 3 and the weighting of its detailing re-
quirements is 4 in each case. The weighting 4 is both the minimum and maximum
weight of the detailing requirements. The minimum weight 4 is higher than the
weighting 3 of the super-ordinated requirement (high “facilities' security”), thus crite-
rion 3 is valid. The logistics expert was informed about that. He considered his re-
quirement for a high “facilities' security” as under-estimated. Thereupon, he corrected
his weighting 3 on the value 4.

According to the consistence analysis between 2nd and 3th level, criterion 2 is va-
lid regarding the super-ordinated requirement for a high “facilities' security concern-
ing the transport unit”. The reason for this is that the maximum weight 2 of the detail-
ing requirements is lower than the weight 4 of the super-ordinated requirement. Due
to that, there is a need for correction of weightings. According to the logistics expert a
possible incompleteness of detailing requirements is not the reason for inconsistency.
Instead, he sees a need for correcting of weightings of detailing requirements. In his
opinion, the low weighting of “collision risk” is incorrect and should correct upwards.
The “slip-resistance” and the “inclination of transport unit by shaking” are equally
important for him, thus he corrected the “slip-resistance” to the weight 4. The maxi-
mum weight 4 is now equal to the weight of the super-ordinated requirement 4. Due
to that the criterion 1 is effective and an inconsistency cannot be presumed anymore.

149

REFSQ 2012 Workshop Proceedings

Fig. 8. Inconsistencies in vertical direction

5 Summary and Forecast

A new procedure for the prioritization of requirements has been presented, that uses
requirement relations. For each new planning process it has to be decided what kind
of prioritization method should be applied. If there do occur none or just a little
amount of requirements relations during a planning process an absolute weighting or
the method AHP should be used in order to weight requirements. In contrast, the pri-
oritization method ANP should be used, if there exist a lot of requirements relations
and the given requirements are not substituted by detailing requirements across sever-
al levels of abstraction. The new developed procedure should be applied especially in
cases where a high amount of requirement relations exists and the set of requirements
are substituted by detailing requirements across several levels of abstraction.

The new developed procedure enables to solve the problems of prioritization
process mentioned in the introduction of this paper by using requirements relations.
One above mentioned problem is the high work-intensity of the weighting process.
This problem can be solved by means of the developed procedure, as it uses horizon-
tal relations in order to determine, which part of requirements should be weighted
only with absolute weightings and for this reason only with a low weighting accuracy.
These are in principle, unimportant requirements as well as requirements without any
relation or only with supporting relations to other requirements. The reason for this is
that these kinds of requirements do have either only a low impact on the result of
planning process or for these kinds of requirements a trade-off between them and
other requirements must not be made. This leads to a reduction of weighting effort
and due to that to a reduction of work-intensity while weighting requirements.

Moreover, the procedure enables to determine which requirement weightings have
to be very precise. Horizontal requirements relations can be also used in order to de-

continuous conveyor

facilities' security

high

WB = 3 , WA = 4

continuous conveyor

facilities' security
concerning stuff

high

W = 4

continuous conveyor

high

W = 4

continuous
conveyor

fall hazard
concerning TU

low

WB = 2 , WA = 2

continuous
conveyor

risk of collision
of TU

low

WB = 2 , WA = 4

continuous
conveyor

slip-resistance
concerning. TU

high

WB = 2 , WA = 4

continuous
conveyor

inclination of TU
by shaking

low

WB= 2 , WA = 4

continuous
conveyor

risk of congestion
concering TU

low

WB = 2 , WA = 2

continuous
conveyor

protection concerning
reaching into

high

W=4

…concretization relation
TU…transport unit
W…weight
WB…weighting before
WA…weighting afterwards

facilities' security
concerning TU

1st level

2nd level

3th level

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

150

termine which part of requirements should be weighted with a high accuracy by
means of relative weightings in advance. Conflicting requirements that are not unim-
portant should be compared with each other and weighted relative. The advantage of
the developed procedure is that requirements, which directly compete, previously are
brought into a ranking. This makes it easier for the customer to weight requirements
using absolute weightings. The relative weightings of requirements will be stored and
can be used during the planning process as soon as a compromise needs to be found.

Only through the concretization of requirements the customer acquires a greater
awareness of what he demands from the product. The result is that he will become
more aware of how important a more abstract requirement actually is in his opinion.
The above mentioned risk that the weight of the super-ordinated requirement and the
weightings of its detailing requirements are not consistent to each other can be
checked, by means of the consistency analysis in vertical direction. Therefore re-
quirements that are connected over vertical relations have to be identified. Due to that,
the existence of a sufficient similarity of the weighting of the super-ordinated re-
quirement and the weightings of the detailing can be proven. Thereby, an incomplete-
ness of detailing requirements or an over- or under-estimation of requirements priori-
tization concerning the vertical direction can be determined.

In order to apply this developed procedure with little effort, the procedure should
be implemented in the forms of a software component. To enable an automatically
and thus very fast and easy identification of requirements relations, the computer-
aided methods for the identification of requirements relations described in [13], [14],
[15] should be part of this software component.

All in all, this procedure activates a dynamic requirements prioritization process,
because the removal of inconsistencies at one point within the requirements model
possibly leads to the establishment of new inconsistencies at another point. The exact
steps of dynamic prioritization process and the associated risk of not reaching a con-
sistent prioritization have to be clarified in the framework of further research activi-
ties. In doing so, it has to be examined how the correctness of the requirements
weightings can be verified by means of a convergence gap as it is used during the
appliance of the method Quality Function Deployment [20]. Statistical methods
known from Six Sigma can be used in order to handle inconsistencies of weightings
[20]. The appliance of such methods has to be proven in the future.

Acknowledgements. The author wishes to thank the Deutsche Forschungsgemein-
schaft (DFG) for supporting her work within the framework of the Collaborative Re-
search Centre 696.

References

1. Maciaszek, L.-A.: Requirements Analysis and System Design, Pearson Education (2007)
2. Crostack H.-A., Mathis J.: Anforderungen an die Intralogistik – Welche Informationen sol-

len sie beinhalten und wie hängen sie zusammen? Berichte zum Qualitätsmanagement,
Göttingen (2009)

151

REFSQ 2012 Workshop Proceedings

3. Mital, A., Desai, A., Subramanian, A.: Product development: a structured approach to con-
sumer product development, design, and manufacture. Butterworth-Heinemann (2007)

4. Ebert, C.: Systematisches Requirements Engineering: Anforderungen ermitteln, spezifizie-
ren, analysieren und verwalten. dpunkt, Heidelberg (2010)

5. Krusche, T.: Strukturierung von Anforderungen für eine effiziente und effektive Produkt-
entwicklung. Shaker, Aachen (2000)

6. Crostack, H.-A., Klute S., Refflinghaus R.: A holistic model for structuring requirements
considering the degree of requirements’ fulfilment and its implementation for data process-
ing. In: Proceedings of the 16th International Symposium on QFD, Portland/USA (2010)

7. Humpert, A.: Methodische Anforderungsverarbeitung auf Basis eines objektorientierten
Anforderungsmodells. HNI-Verlagsschriftenreihe, Paderborn (1995)

8. Heimannsfeld, K.: Modellbasierte Anforderungen in der Produkt- und Systementwicklung.
Shaker, Aachen (2001)

9. Jörg, M.-A.: Ein Beitrag zur ganzheitlichen Erfassung und Integration von Produktanfor-
derungen mit Hilfe linguistischer Methoden. Shaker, Aachen (2005)

10. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques, Springer,
Heidelberg (2010)

11. Rupp, C.: Requirements-Engineering und –Management – Professionelle, iterative Anfor-
derungsanalyse für die Praxis, Carl Hanser, Munich (2002)

12. Bekkers, W., van de Weerd, I.: SPM MATURITY MATRIX: Technical Report UU-CS-
2010-013, May (2010)

13. Crostack, H.-A., Kolbe, C., Refflinghaus, R.: Computer-aided method for automatic identi-
fication of effect relations between requirements on an intra-logistics facility. In: Proceed-
ings of the 16th International Symposium on QFD, Portland/USA (2010)

14. Kolbe, C., Refflinghaus R.: Knowledge-based Concretization of Requirements in Prepara-
tion for AHP. 17th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ2011) 31st of March 2011, Essen, Germany. In:
Proceedings of the Second Workshop on Requirements Prioritization for customer-
oriented Software-Development RePriCo’11 (2011)

15. Kolbe C., Refflinghaus R.: Consideration of Requirements Relations during the Appliance
of QFD. In: Proceedings of the 17th International QFD Symposium (ISQFD'11): Achiev-
ing Sustainability with QFD. Stuttgart, Germany (2011)

16. Refflinghaus, R.: Einsatz des Analytischen Hierarchie Prozesses zur Vorbereitung der
kundenspezifischen Eingangsgrößen eines Quality Function Deployments, Sonderfor-
schungsbereich 696: Forderungsgerechte Auslegung von intralogistischen Systemen– Lo-
gistics on Demand Technical Report 0901 (2009)

17. Gamweger, J., Jöbstl, O, Strohrmann, M: Design for Six Sigma: Kundenorientierte Pro-
dukte und Prozesse, Carl Hanser, Munich (2009)

18. Saaty, T.-L., Vargas, L.-G.: Models, methods, concepts & applications of the analytic hie-
rarchy process, Springer, Heidelberg (2000)

19. Saaty T.-L., Gonzalez Vargas, L.: Decision making with the analytic network process:
economic, political, social and technological applications with benefits, opportunities,
costs and risks. Springer, Heidelberg (2006)

20. Fehlmann, T., Kranich, E.: Classification of Decisions Metrics, MetriKon 2010,
http://www.e-p-o.com/downloads/classificationfordecisionmetrics.pdf, (2010)

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

152

Achieving Consensus in Requirements Engineering from
the Viewpoint of Discourse Ethics

Alexander Rachmann

Hochschule Niederrhein, Centre of Excellence FAST
Reinarzstrasse 49, 47807 Krefeld, Germany

alexander.rachmann@hs-niederrhein.de
http://www.hs-niederrhein.de/fast

Abstract. Requirements engineering is commonly understood as a communica-
tive process in which the customer and the developer achieve cooperatively
consensus. This is well described by several negotiating techniques. There are
several methods available to achieve consensus for ethical aspects (e.g. priori-
tizing requirements), but a tight integration with the findings of ethical research
is still open. This paper takes some criteria from discourse ethics and applies
these to consensus management in requirements engineering. The result is a
rough scheme with which a developer may decide if the process of achieving
consensus in requirements engineering may be “ethical”.

Keywords: requirements engineering, discourse ethics, consensus, values in
systems engineering, ethical discussion

1 Introduction

The concept of discourse ethics is a well established method to achieve consensus in a
group. The achievement of consensus is a key activity in requirements engineering.
Therefore, the combination of discourse ethics and requirements engineering seems
promising. This paper makes a first step to identify criteria of discourse ethics which
are relevant for requirements engineering.

Requirements engineering is described as a communicative process (chapter 2), the
concept of discourse ethics is introduced (chapter 3), and an integration of both is
provided (chapter 4). A small case study demonstrates the application of the before
mentioned theory (chapter 5). A summary, conclusion and an outlook close this paper.

2 Requirements Engineering as a Communicative Process

It is consensus that requirements engineering is a communicative process in which the
customer and the developer integrate their viewpoints by working cooperatively to
achieve consensus. I.e. the customer demands requirements. Most often, the developer
cannot implement the requirements precisely as formulated by the stakeholders. The
developer is constrained by scarce resources such as time and budget, resulting in

153

REFSQ 2012 Workshop Proceedings

conflicts [7]. Most of these conflicts arise due to different priorities assigned to the
requirements by the different stakeholders. For each of those conflicts, a consensus
must be achieved. In every project there will be at least a handful of conflicts of dif-
ferent natures: economical, social, technical, etc. conflicts. E.g. an economical con-
sensus will be met through the usage of economical methods: A conflict concerning
on what actions the disposable money should be spent, will be solved by calculating
different variations of investment.

To achieve consensus, customer and developer agree upon a compromise that
meets the given constraints. The compromise is rarely symmetric: most often the cus-
tomer has the power to outvote the developer. However, methods for solving econom-
ical or technical conflicts, even social conflicts, are well discussed and often applied.
Ethical conflicts are less well understood, despite the fact that there are some elabo-
rate approaches, e.g. [9], [18], or [25].

The requirements engineer differentiates three core activities in his work [19]:

� Elicitation: the requirements are gathered from each (group of) stakeholder(s).
� Documentation: the elicited requirements are written down.
� Negotiation: the documented requirements are usually conflicting, resulting from

the different viewpoints of the stakeholders. It is a crucial activity in requirements
engineering to mediate these conflicts.

Requirements Engineering cooperates conflict solving techniques in its core activity
“negotiation” [19]. Therefore the negotiating activity is the most relevant one for
discourse ethics.

One point to negotiate about in almost every project is the prioritization of re-
quirements: A (group of) stakeholder(s) may judge a requirement more important than
a different (group of) stakeholder(s). Each judgment is based upon a reason, made by
the individual stakeholder. In this paper, only reasons are focused that have a moral
background.

3 Discourse Ethics

Ethics is the scientific discipline that focuses on moral actions. BIRNBACHER states
two basic approaches in ethics: approaches that focus on which norm to follow (nor-
mative ethics) and approaches that focus on the identification of the norms to follow
(method ethics) [5]. One of the best known and most influential method ethics is the
discourse ethics by HABERMAS and APEL [3], [10], [11].

Discourse ethics introduces a communicative method to find consensus in a group.
It focuses not just system development, but rather all human interactions. It builds
upon the values of the Aufklärung, as stated by Kant: “Have the courage to use your
own understanding” [14].

Throughout time and authors there is no common understanding on how to find a
consensus, but all approaches to discourse ethics share two principles D (principle of
discourse ethics) and U (universalization) [10], [12]:

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

154

� (D) Only those norms are valid that are approved by the participants of a discourse.
In terms of RE, a “participant of a discourse” would be called a stakeholder.

� (U) All stakeholders accept the effects and the side effects of the approved norms.

If both principles are valid, the results of a discourse (e.g. the consensus) are morally
justified. For both principles to be valid, three preconditions must be met, according
to BIRNBACHER [4]:

1. Equality: Each participant recognizes the other participants as equal debater.
2. Freedom of choice: Each participant has the right to choose his “goal in life”, as

long as those goals in life do not conflict with the goals of the others.
3. Willingness to discuss: Each participant is willing to discuss the ethical assessment

(of the requirements).

However, the principle of discourse ethics, the universalization and all three precondi-
tions are idealistic. Their realization is difficult due to the complex hierarchies and
exercises of power in society. A main problem in the realization of the theory of dis-
course ethics is the question, how discourse ethics can be effective in an environment
with low moral aims, e.g. an environment where no discourse takes place [5], [10].

By understanding the system development process as a communicative process, all
above mentioned properties of discourse ethics apply also to the development process,
i.e. to requirements engineering. Weber-Wulff et al. customize a scheme for an ethical
discussion to the needs of a software developer, divided in four steps [27]:

1. analysis of the situation,
2. analysis of the conflicts,
3. application of relevant norms, and
4. assessment.

The main objective of WEBER-WULFF ET AL. is the education of computer science
students, not the application of the scheme in industry. Due to this objective, the
scheme is not located in a development process. Requirements engineering is best
suited for being such a container, mainly the process of negotiation, as proposed by
POHL [19].

4 Requirements Engineering as an Ethical Discourse

As described above, there is consensus about what preconditions must be met to agree
upon ethical norms. Further, the development process is acknowledged as a commu-
nicative process, and a formal scheme for discussing ethical issues is available. How-
ever, the acceptance of the development process as an ethical discourse did not yet
penetrate the requirements engineering community. Fig. 1 gives an overview on how
an ethical discussion is placed in the RE process: the negotiation activity of RE in-
cludes the four phases according to WEBER-WULFF ET AL. The phases depend on the
realization of the universalization and the principle of discourse. These two depend
upon the three preconditions as described by BIRNBACHER. From my point of view: if

155

REFSQ 2012 Workshop Proceedings

the ethical discourse should be placed in requirements engineering, these three pre-
conditions are the starting point.

Fig. 1. Requirements Engineering as a Container for a Scheme for an Ethical Discussion

4.1 Equality

As with in society in general, there is always a hierarchy in developments projects
[23]. The permission of equal rights for each project participant contradicts with the
classic plan-driven engineering approaches, especially with classic customer-client
relations and employer-employee relations. This may lead to the unfulfillment of the
first precondition of the ethical discourse. This idealistic touch of discourse ethics is
well known and often criticized [8]. However, the engineering community knows also
idealized approaches very well: PARNAS AND CLEMENS describe the system develop-
ment process as a goal-focused process, during which all decision are always strictly
rational. In reality very few decision in development are strictly rational. Most often
decisions are not even documented, such as:

� how do the goals of a system and the prioritization of the requirements relate to the
ethics code of a company

� how do the goals of a system and the prioritization of the requirements relate to the
ethics code of the user

� how do the goals of a system and the prioritization of the requirements relate to the
ethics code of the developer

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

156

The description of an engineering process is nearly always idealized and rational. The
real process is never rational. However, it still makes sense to use idealized processes,
because the developer needs a guiding light to foresee undesirable trends [16].

The opposition in this discussion is headed by POPPENDIECK AND POPPENDIECK:
However, they do not criticize the fact that the process is idealized, but rather in what
way it is idealized. They see the agile methods as a way to better idealize the devel-
opment [20].

From my point of view it is ok, that the scheme for the ethical discussion is ideal-
ized. The same arguments that hold for idealizing the development process as a whole
also account for the idealized ethical discussion. However, the developers need to be
aware, how the three preconditions, the principle of discourse ethics and universaliza-
tion influences their work – or rather, how even the non-observance influences their
work.

4.2 Freedom of Choice

HABERMAS speaks of the Zielwahlfreiheit, meaning the freedom of choice to choose
his own goals in “life”. The work of the system developer is most often not his whole
life. Decisions that are made during the development process do rarely interfere with
the goals in the developers’ life. From this point of view, one may ease this precondi-
tion: One may regard here to a formulation such as “job-relevant goals”.

The members of an organization, say a company for software engineering, most of-
ten work for other companies, i.e. as a consultant or programmer. Often, it is unclear,
which goals the developer follows: his own, as an enlightened person, or the goals of
the company. In a perfect situation, the goals may be the same. In the real world, the
goals may differ. It is crucial to understand whose goal the developer follows. There
is no simple way to determine what goals are always to follow – first, the developer
has to understand, what his goals, his companies goals and the customers goals are.
Obviously, if all goals are in accordance, this is the easiest variant. However, if the
goals of an organization (be it the customer or someone else) are not in accordance
with the developers goal, the developer has to take a position.

A very famous decision of this nature was made by WEIZENBAUM: He developed
the first chat-bot named ELIZA. As a case study, WEIZENBAUM used phrases from
psychotherapy in ELIZA [28]. Therefore, a human chatting with ELIZA may have
had the feeling to talk to a real therapist. As this idea was absorbed by a few therapists
for their day-to-day work (see [6]), WEIZENBAUM decided to stop his work on ELIZA.
This was an ethical decision in contrast to his scientific community [29] [30].

4.3 Willingness to Discuss

Both freedom of choice and equality of the group members are not sufficient for a
discourse to happen. Also, all participants must be willing to discuss ethical issues.
For the developer and the customer are two different aspects relevant:

157

REFSQ 2012 Workshop Proceedings

� The participant needs competence, expertise, authority and capacity to work in the
project as well as incentives which can only be received in this exact project [15].
Besides, the participant needs the rhetorical skills to express his opinion and under-
stand the arguments and opinions of the other participants.

� Taken as a given that the developer is motivated to work in the project per se: The
developer has to be aware that his actions have an influence on ethical aspects. The
well known attitude “I just want to develop a system, and not talk about ethics and
philosophy” may hinder the discourse.

5 Case Study: Care for Elderly People Regarding Privacy and
Control

A small case study, loosely based on the best practice described in [21] and [22], may
clarify the application of the above mentioned theory. In this case study, a require-
ments engineer works in a project to develop a system for telecare of elderly people.
The to-be-developed system consists of a set of sensors in the home of the customer.
The sensors monitor the biosignals of the customer and recognize thereby emergen-
cies in his life. In the case of an emergency, the care provider is contacted by the sys-
tem and may help the customer.

Some real life projects concerning this objective are documented in [13], [17], [24]
and [26].

5.1 Preconditions to the Ethical Discourse

At first, the requirements engineer may assemble the stakeholders: The care provid-
ers, the engineers of the technical system, and a delegate of the end-users. (In real life
there may be even more stakeholders, but for the sake of the focus of the paper, one
may restrict to this three stakeholders.) Then, the requirements engineer would check
if this group of stakeholders fulfills the precondition for an ethical discourse: In this
case study, one may take for granted, that the stakeholders are equal in their rights,
they are free to choose their goals and they are willing to discuss.

As in most projects, the goals of the to-be-built system are discussed. Possible
goals are:

� The care provider wants to help the end-user and thereby take a small portion of
control of the life of the end-user.

� The end-user wants the help of the care provider, but at the same time does not
want any inference in his privacy.

In this case, the both goals control and privacy are in a spectrum: Too much control of
the care provider limits the privacy of both. At the same time, an untouched privacy
takes away the control of a care provider. In the wording of requirements prioritiza-
tion: The stakeholders assign different priorities to the two goals.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

158

5.2 Prioritization of the Goals in an Ethical Discourse

As both goals are approved by both parties, there must be a prioritization of the goals
(see fig. 1, “analysis of the situation” and “analysis of conflicts”). The reasons for the
prioritization are based on the moral point of views of the stakeholders (“application
of relevant norms”). The achievement of a consensus will bring up a system that is
consistent with the care provider and the end-user (being deputized in the project)
(“assessment”).

The result of such a project (i.e. ethical discourse in requirements engineering) may
be a system that

1. supports an elderly to keep living in his home (emphasis on privacy),
2. supports the care provider to support the elderly (emphasis on control),
3. and lets the end-user decide when and which data is being transferred to the care

provider (emphasis on privacy).

To implement these three requirements, a system is needed that offers at least two
different points in time to transfer data from the home of the end user to the care pro-
vider. One may think of these two points in time: The earlier data is transmitted, the
more the privacy of the person is constricted and the control of the care provider is
extended. The later data is transmitted, the privacy of the elderly is preserved, but at
the same time, the control function of the care provider is restricted.

6 Summary

In this paper I argued that requirements engineering, as a communicative develop-
ment process, is in its nature very similar to the theory of discourse ethics. Both rely
on the communicative act of agreeing upon a compromise in a constrained and con-
flict-tainted environment, both are idealized and never strictly rational. A small case
study showed the application of the discourse theory.

However, the case study disregards problems of a real-life project: It is not likely
to change the hierarchy-tainted reality in a company and thereby fulfilling the precon-
ditions for an ethical discourse. Rather, in my humble opinion, the first step should be
to teach the parallels of requirements engineering with discourse ethics to the system
developer, i.e. the requirements engineer. This may create thoughtfulness for his ac-
tions. This alone will make him aware of power hierarchies in projects [8]. Hopefully,
requirements engineer will therefore state their ethical viewpoints and thereby start an
ethical discourse. By having a formal discussion scheme in mind (see above), they
can be guided through the discourse. With this background, the achieved consensus
(here: concerning the prioritization of the requirements) in a project may be called
morally justified.

159

REFSQ 2012 Workshop Proceedings

7 Discussion at the RePriCo-Workshop

The assumption for the discussion was that there is a gap between the theory of dis-
course ethics and the practice of requirements engineering: Due to the fact that the
three preconditions of the ethical discourse are rarely fulfilled, there can be in theory
no morally justified results. However, the conception of the work of the requirements
engineer is different, since a lot of results of the work of requirements engineers are in
accordance with the moral views of a lot of people. From this point of view, two
questions were given to the participants of the RePriCo-Workshop along with pen and
paper for the metaplan technique:

� Is there an ethical discourse in “real life RE”?
� What are the factors that influence the discourse in “real life RE”?

The participants wrote their opinions and estimation on papers; the moderator of the
discussion collected these papers and structured these answers. The concluding dis-
cussion explained the answers in more depth, resulting in several points:

� The work in a project is mostly influenced by a hierarchy of power and money,
thereby hindering an ethical discourse. However, several participants pointed out
that there is in fact a discourse in a typical requirements engineering project. Also,
the influence of different cultures and application domains was pointed out.

� The importance of a market selection was discussed and by several participants
supported. E.g. the requirements engineer is constructing a product without regard
to a specific moral value. By giving the customer the choice to buy or not to buy a
product, only those products establish that meet the moral values of the customers.
This builds mainly upon the assumption that the rules of a free market are also
moral values (for a similar discussion in the academic business administration dis-
cipline see [1, 2]). However, the case of market failure or imperfect market compe-
tition (e.g. monopolies) was shortly discussed. The resulting missing selection con-
cerning moral requirements was pointed out.

� The involvement of end-user/customers is a lack of requirements engineering, even
though the involvement of advocates of end-users is a viable option. If neither end-
user nor advocates are present in a requirements engineering project, it turns out to
be a situation where the end-user “has no rights at all”.

References

1. Albach, H.: Betriebswirtschaftlehre ohne Unternehmensethik! Zeitschrift für Betriebswirt-
schaft 75, pp. 809-831 (2005)

2. Albach, H.: Betriebswirtschaftslehre ohne Unternehmensethik – Eine Erwiderung. Zeit-
schrift für Betriebswirtschaft 77, pp. 195-206 (2007)

3. Apel, K.-O.: Grenzen der Diskursethik? Versuch einer Zwischenbilanz. Zeitschrift für phi-
losophische Forschung 40, pp. 3-31 (1986)

4. Birnbacher, D.: Habermas' ehrgeiziges Beweisziel – erreicht oder verfehlt? Deutsche Zeit-
schrift für Philosophie 50, pp. 121-126 (2002)

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

160

5. Birnbacher, D.: Analytische Einführung in die Ethik. Berlin, New York (2007)
6. Colby, K. M., Watt, J. B., Gilbert, J. P.: A Computer Method of Psychotherapy: Prelimi-

nary Communication. The Journal of Nervous and Mental Disease 142, pp. 148-152
(1966)

7. Fleischmann, K., Wallace, W.: Value Conflicts in Computational Modeling. Computer 43,
pp. 57-63 (2010)

8. Flyvbjorg, B.: Habermas and Foucault: thinkers for civil society? British Journal of Soci-
ology 49, pp. 210-233 (1998)

9. Friedman, B.: Value Sensitive Design. In: Encyclopedia of human-computer interaction.
pp. 769-774. Great Barrington (2004)

10. Gottschalk-Mazouz, N.: Diskursethische Varianten. Deutsche Zeitschrift für Philosophie
50, pp. 87-104 (2002)

11. Habermas, J.: Theorie des kommunikativen Handelns. Band 2: Zur Kritik der funktionalis-
tischen Vernunft. Frankfurt am Main (1981)

12. Habermas, J.: Diskursethik – Notizen zu einem Begründungsprogramm. In: Moralbewußt-
sein und kommunikatives Handeln. pp. 53-125. Frankfurt am Main (1983)

13. Khaled, B., Rumm, P. and Lukowicz, P.: AiperCare – ein interaktives Monitoring-System
für Personen mit neurologischen Einschränkungen und deren Umfeld. In: Proceedings of
the 5. Deutscher AAL-Kongress Technik für ein selbstbestimmtes Leben. 24.-25. January
2012 in Berlin. VDE Verlag (2012)

14. Kant, I.: An Answer to the Question: What is Enlightenment?
http://www.english.upenn.edu/~mgamer/Etexts/kant.html (1784)

15. Lüschow, F.: Arbeit in der Linienorganisation – Arbeit im Projekt: zwei Welten begegnen
sich. In: Vortrag auf dem 24. internationalen Deutschen Projekmanagement-Forum 2007
(GPM) in München. (2007)

16. Parnas, D. L., Clements, P. C.: A rational design process: How and why to fake it. IEEE
Trans. Softw. Eng. 12, pp. 251-257 (1986)

17. Pflüger, M., Kroll, J. and Steiner, B.: Automatische Notfallerkennung durch optische und
akustische Sensoren. In: Proceedings of the 5. Deutscher AAL-Kongress Technik für ein
selbstbestimmtes Leben. 24.-25. January 2012 in Berlin. VDE Verlag (2012)

18. Pietsch, W.: Ethical Product Management Employing QFD. In: Proceedings of the 15th In-
ternational Symposium on Quality Function Deployment, Monterrey, Mexico, October
22.-23.2009. pp. 45-52. (2009)

19. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Berlin
(2010)

20. Poppendieck, M. B., Poppendieck, T. D.: A Rational Design Process – It's Time to Stop
Faking it. http://www.leanessays.com/2010/11/rational-design-process-its-time-to.html
(2000)

21. Rachmann, A.: Telemonitoring-Dienstleistungen in der Altenhilfe unter besonderer Be-
rücksichtigung von Kontrolle und Privatsphäre. Working paper 11-81 of the chair
Wirtschaftsinformatik at the Ruhr-Universität Bochum (2011).

22. Rachmann, A.. Referenzmodelle für Telemonitoring-Dienstleistungen in der Altenhilfe. In:
Proceedings of the Modellierung 2012, 14.-16. March 2012 at the Otto-Friedrich-
Universität Bamberg. GI-Edition Lecture Notes in Informatics P-201, pp. 219-234 . Ge-
sellschaft für Informatik, Bonn (2012).

23. Rittgen, P.: Negotiating Models. In: Advanced Information Systems Engineering. LNCS
vol. 4495. pp. 561-573. Springer, Heidelberg (2007)

24. Rodner, T., Floeck, M. and Litz, L.: Inaktivitätsüberwachung und Alarmhandling zur Ver-
ringerung von Fehlalarmen. In: Proceedings of the 4. Deutscher AAL-Kongress Innovative

161

REFSQ 2012 Workshop Proceedings

Assistenzsysteme im Dienste des Menschen – Von der Forschung für den Markt. VDE
Verlag (2011)

25. Ropohl, G.: Ethik und Technikbewertung. Frankfurt am Main (1996)
26. Spehr, J., Gietzelt, M., Wegel, S., Költzsch, Y., Winkelbach, S., Marschollek, M., Göver-

cin, M., Wahl, F., Haux, R. and Steinhagen-Thiessen, E.: Vermessung von Gangparame-
tern zur Sturzprädikation durch Vision-und Beschleunigungssensorik. In: Proceedings of
the 4. Deutscher AAL-Kongress Innovative Assistenzsysteme im Dienste des Menschen –
Von der Forschung für den Markt. VDE Verlag (2011)

27. Weber-Wulff, D., Class, C., Coy, W., Kurz, C., Zellhöfer, D.: Gewissensbisse: Ethische
Probleme der Informatik. Bielefeld (2009)

28. Weizenbaum, J.: ELIZA – A Computer Program For the Study of Natural Language
Communication Between Man And Machine. Communications of the ACM 9, pp. 36-45
(1966)

29. Weizenbaum, J.: Alptraum Computer. Die Zeit 43 (1972)
30. Weizenbaum, J.: Computer Power and Human Reason. London (1984)

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

162

Requirements Negotiation
in Consideration of Dynamics and Interactivity

Andreas Reiser1, Benedikt Krams2, Mareike Schoop1

1 Information Systems I, University of Hohenheim, 70593 Stuttgart, Germany
andreas.reiser@wi1.uni-hohenheim.de, m.schoop@uni-hohenheim.de

2 Department for Business Administration and Information Systems II, esp. Business Soft-
ware, Universität Stuttgart, 70147 Stuttgart, Germany

krams@wi.uni-stutgart.de

Abstract. Due to conflicts which arise between customers and developers in
software development it is worthwhile to regard requirements engineering (RE)
from a decision making and communication perspective. If comparing RE with
negotiation theory there exist important similarities between both perspectives.
This paper introduces a negotiation-centered view on requirements elicitation
and focuses on two main aspects, namely process definition and the role of
asymmetric information. A software platform offering different methods of re-
quirements elicitation, communication support including semantic enrichment,
and negotiation support in general will be introduced to highlight a new ap-
proach to requirements negotiation. After introducing several steps for im-
provement of the software platform a conclusion in the context of the process
definition in RE and asymmetric information is given.

Keywords: Requirements engineering, requirements negotiation, requirements
elicitation, requirements prioritization, preference elicitation, dynamic prefer-
ence elicitation, decision support, communication support, Negoisst

1 Introduction

Software development starts with the phase of requirements elicitation and analysis.
In an idealised view, customers know their complete requirements, are able to utter
them in a way that is directly understandable for the software development team who
will develop the product according to the requirements, and no conflict between cus-
tomer and developer will occur during the process.

However, the real world is not an ideal one. Firstly, from a decision making per-
spective, customers do not always know their complete requirements at the very be-
ginning of the joint elicitation process. Instead, the participants will exchange infor-
mation during the whole requirements engineering (RE) process and constantly refine
or adapt their preferences to their current knowledge. Second, from a communication
perspective, the participants are sometimes not able to utter what they need in a clear,
direct, and structured manner. Additionally, conflicts that might occur during the
software development process between customer and development team need to be
addressed and, if possible, solved.

163

REFSQ 2012 Workshop Proceedings

The two above-mentioned problem types are typical issues stemming from the dy-
namical and interactive character of requirements elicitation and analysis in contrast
to one-shot elicitations of other domains like market research or business intelligence.
Moreover, these two aspects show some important similarities of the requirements
engineering domain compared to current research activities in negotiation theory.
Newer developments in negotiation theory tend to propagate a dynamic perspective
on information exchange and preference elicitation [10], [14]. We therefore introduce
a negotiation-centered view on requirements elicitation and highlight the requirements
for communication- and decision support in this iterative process.

Our research follows a design science approach [5]. We first focus on assessment
of criteria for a communication-centered requirements engineering process. Second,
we will introduce a software artifact as a first evaluation for an iterative refinement.
To this end, the paper introduces a software platform offering different methods of
requirements elicitation (to help customers find out and express their requirements
and preferences), communication support including semantic enrichment (to discuss
needs in a flexible yet structured way), and negotiation support in general (to deal
with different goals and enable conflict management). This article mainly describes
work in progress; therefore we will particularly highlight some of the main challeng-
es, namely the process design and the influence of asymmetrical information.

2 A Negotiation-centered View on Requirements Engineering

Requirements engineering in general consists of the requirements analysis and re-
quirements management, is a “(…) cooperative, iterative, and incremental pro-
cess“ [13], and can be seen as multi(bi-)lateral meta-negotiations, i.e. negotiations
about the composition of specific negotiation contents (requirements). In other words,
we do not conduct negotiations about the exchange of goods directly, but about the
specifications of goods. This negotiation-centered perspective on RE highlights cer-
tain aspects of the RE-process that are not covered by other models yet. In this paper,
we want to address two aspects that can be beneficial in many RE situations. First, we
discuss the differences in the process itself, especially the communication-centered
perspective in negotiations and the interaction with decision support. Second, we
address the problem of asymmetric information and some suggestions how to deal
with this potential problem. Referring to [2], we will use the term requirements nego-
tiation (RN) for this view on RE.

2.1 The Process of Requirements Negotiation

RE usually involves a lot of resources (personnel, time, money, etc.) giving rise to the
need of a good administration for the whole process. One of the main challenges is to
effectively catch and align the requirements of all stakeholders involved. This task
most likely becomes a difficult process since this involves considering several proce-
dural and behavioral attributes at the same time. In order to reduce this cognitive
complexity, several requirements elicitation and/or analysis procedures have been

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

164

proposed for the domain of requirements engineering, either as task-specific models
or general frameworks (for an overview see [4]). Most of these procedures are mainly
developed as process models for various requirements engineering activities. This
basically enables a holistic approach to RE where the process will be shaped by the
applied model. The benefit of using these model-centered approaches is a uniform,
well-ordered and clear line of action for all stakeholders. On the other hand, this re-
quires the participants to learn a specific RE-model beforehand and adapt their way of
thinking to meet this process.

This raises the question whether it is always the best option to determine the RE-
process by providing a full-blown and fixed process definition. A negotiation-
centered approach can solve this problem by supporting the communication and deci-
sion making instead of providing a strict path of actions. However, this doesn’t mean
just to provide a communication and/or decision support platform. Instead, several
RE-inherent tasks must be considered for providing the right support tools for the task
at hand. We identify several needs of support techniques that are common to negotia-
tion in general and for the domain of requirements negotiations in particular.

Parallel to negotiations, the communication and decision making process in RE can
be divided into three phases: preparation, negotiation and settlement [9]. At the be-
ginning of the RE-process, the participant has to prepare himself for the later ex-
change of information which – from a stakeholder’s perspective – mainly involves the
formulation of goals, needs, arguments and the demand for information. In this phase,
we need a rather individual support for the requirements elicitation. In the second
phase, the stakeholders will exchange information and try to align their preferences
which require common support for communication and decision making in order to
build optimized, joint solutions. In the last phase, the generation of a settlement, the
participants also need communication and decision making support, as well as addi-
tional document support e.g. for building legal requirements specification.

The use of different support tools for different phases of the RE-process also sepa-
rates the RE-process models from the RN-approach: instead of actively forcing a
particular procedure, the RN-approach focuses on the communication of the stake-
holders with additional, optional support tools. Therefore, the main concern of RN is
not to choose the right process model, but to provide the right tools at the right time.

2.2 Decision Support in Requirements Negotiation and the Role of
Asymmetric Information

Following the above-mentioned negotiation phases, decision support is present in all
three phases of the RN-process, for individual elicitation as well as joint decision
making. Therefore, from the various classes of decision support systems, a tool for
RE needs to enable personal support as well as group support [6]. In addition, draw-
ing a clear distinction between requirements elicitation and analysis enables the par-
ticipants to choose from a variety of elicitation methods which best fits the needs for
the specific RE task.

In the preparation phase, we will individually elicit the preferences of every stake-
holder involved which can be done either using qualitative or quantitative assess-

165

REFSQ 2012 Workshop Proceedings

ments. However, from a decision support point of view, a usual way is to provide a
method to quantify all these requirements as a unified measurement (e.g. scoring sys-
tems, utility models, etc.) allowing for detailed analysis of the stakeholder’s prefer-
ences (e.g. comparison, aggregation and trade-offs).

In the negotiation and settlement phase, the preference model can then be used for
a wide range of analytical support tools, e.g. graphical representations, verbal sugges-
tions or numerical indicators. This analytical support can be further divided into
asymmetrical support tools for measuring the individual performance and symmet-
rical support tools for a joint optimization [14].

Now, if we treat RN as communication-centered process, how can we link the elic-
itation of individual requirements to this process? There are two important aspects of
communication in negotiation that need to be considered in the progress of elicitation
[20]. First, RN is an interactive process where people exchange ideas, thoughts and
arguments, in other words, we have to consider formal and informal communication
aspects [17]. This communication process involves the exchange of information
which in turn influences the preferences of the participants. Second, RN is a dynamic
process, not a one-shot proposal. Therefore, the preferences must be adapted to the
current information level.

As these two aspects imply, considering asymmetrical information is a critical re-
quirement for using a communication-centered RE process. More precise, asymmet-
rical information has a high impact on the whole RN-procedure:

� In contrast to normative economics, the participants in a RE-process do not start
with enough information to make a decision. Therefore, this must be considered in
the initial requirements elicitation. The initial preference model may contain errors
stemming from individual assumptions, beliefs and thoughts. As a consequence,
the elicitation procedure must support an error rate or fuzzyfication.

� As with communication exchange advances so comes new or updated information.
It is very likely that this information also influences the assessment of the require-
ments. Therefore, the elicitation method must be capable of catching these changes
in the evaluation of the requirements. This can be done in two ways, either auto-
matically or interactive. For an automated assessment of requirements, the decision
support system must provide information about divergences in the preference mod-
el, e.g. by measuring consistency. For an interactive assessment, the user provides
additional information for discovering divergences. This can be done e.g. by asking
the user about his current level of information for single requirements.

� If a divergence of the initial and current preference model is discovered, the evalu-
ation of requirements must be updated to the current information level. This can al-
so be done automatically or interactive. An automated approach will need to pro-
cess the new information and quantify them for the individual evaluation of the
participant. On the other hand, the requirements can also be re-elicited by the user
himself. However, it does not make sense to re-elicit every single issue since this
will bind additional resources. Instead, an appropriate method must be capable of
only catching necessary changes in the preference model.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

166

In the following chapters, we will introduce a software prototype which considers
both, process and information requirements for an RN-model.

3 A Scenario for Requirements Elicitation and Requirements
Prioritization

As conflicts are the trigger for negotiations (cf. chapter 1) we envision a short scenar-
io to discuss ex-ante and dynamic preference elicitation as well as analytical support
in the context of requirements negotiation.

Initial point is the wish to develop a piece of software (e.g. an add-on to a text pro-
gram to compile bulk letters) which needs to be done due to reasons out of focus in a
distributed software development team. This team consists of a group of customers
and a group of developers which are located in different continents. Responsible pro-
ject managers of both groups decided to use a collaboration tool because of spatial
and temporal allocation of the groups.

The software platform enabling and supporting multi-professional interactions by
means of decision support and communication support in such a scenario is called
Negoisst [18]. This platform integrates three different types of support, namely deci-
sion support, communication support and document management. Although all three
types are relevant in RE process, in this paper, we will focus on the communication
and decision support components.1

Requirements negotiations are iterative and dynamic processes. Dynamic, because
arguments, beliefs, and thoughts are exchanged between all participants which will
then influence the process itself. In this process, the negotiators try to reach a joint
outcome that best fits the needs of all participants, i.e. to reach an integrative solution
(win-win situation, cf. e.g. [2]). Iterative, because RE is a communication-driven pro-
cess where the participants iteratively exchange arguments in order to converge to a
joint solution.

Therefore, decision support in requirements engineering is not a one-shot assis-
tance, but needs to cover the whole process. In Negoisst, decision support consists of
two steps (for a more detailed description see [14]): The first step is a preference elici-
tation process to compute an individual utility model, using compositional and/or
decompositional preference elicitation methods adapted from Multi-Attribute Utility
Theory (MAUT). MAUT serves as the base model in many preference elicitation
domains e.g. market research or business intelligence. The benefit is that these models
follow a common preference concept that can be easily understood and interpreted by
all participants.

In the second step, the stakeholders are presented with a wide range of analytical
support tools based on the user’s individual utility model.

1 For a detailed description of the support types communication support and document man-

agement see [17].

167

REFSQ 2012 Workshop Proceedings

3.1 Ex-ante Preference Elicitation

The aim of preference elicitation is to get a standardized representation of someone’s
real preferences (which are not directly ascertainable in general). In this prototype, we
will represent the user’s preferences by generating a utility model. The reason for this
approach is the uncomplicated traceability and interpretation which only requires little
training of the stakeholders. Additionally, a utility-based approach enables an easy
solution for comparing and aligning the preferences of the participants. In a require-
ments engineering process, we therefore need to evaluate the individual importance
for every single requirement (e.g. database design: accessibility vs. high transaction
isolation), as well as the preferences for the individual options of a single requirement
(e.g. isolation levels {Repeatable Read; Read Stability; Cursor Stability; Uncommit-
ted Read}).

The question arises, which method to use for the elicitation of preferences. In gen-
eral, this choice should be based on the cognitive complexity of the decision at hand.
In a well-structured, fully specified decision problem, the participant can therefore
explicate his/her preferences directly. On the other hand, if the decision-maker will be
confronted with an un-structured and/or only partially specified decision problem,
he/she cannot conduct rational decisions. Instead, those decisions will be based on
non-cognitive behavior, basically built on fuzzy knowledge and various unconscious
factors [12]. In this case, someone would use indirect preference elicitation methods,
such as Conjoint- or Discrete Choice-Models. In the domain of requirements engi-
neering, we will usually find both types of behavior. We therefore suggest a hybrid
preference elicitation process which covers various types of behavior.

The current Negoisst system is based on a direct self-explicated approach based on
a hybrid conjoint model [11], [1] and an Analytical Hierarchy Process (AHP, in [15],
[16]) as an alternative method. The choice, which preference elicitation procedure to
use mainly depends on the initial RE situation. If there exist some predefined alterna-
tives (e.g. which software to buy), AHP will be the preferred option. On the other
hand, if the RE-process mainly focuses on discovering and aligning requirements, one
should prefer a hybrid conjoint model instead. The preference model considers two
different part worth types, i.e. numeric attributes (with which continuous codomains
can be represented, being limited by a best case and a worst case value, e.g. a price)
and categorical attributes (with which discrete codomains are represented, e.g. a finite
set of colours such as black, blue, orange). The utility function is computed accord-
ingly and the utility values are displayed for each message written and received. In
this prototype, we use a linear-additive utility model.

Figure 1 shows the self-explicated preference elicitation method. This method is
also used for some of the hybrid elicitation methods.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

168

Fig. 1. Self-explicated preference elicitation

Figure 2 shows an indirect preference elicitation method, namely a choice-oriented,
hybrid individualized conjoint analysis. This approach holds a sufficient approxima-
tion of the user's preferences, as long as the attributes are loosely structured without a
strong hierarchy.

Fig. 2. Choice-oriented, hybrid individualized conjoint analysis

3.2 Dynamic Preference Elicitation

An ex-ante preference elicitation performs well if all relevant information is known to
the participants and if there is only negligible uncertainty concerning the evaluation of
the requirements. On the other hand, if the preferences are likely to change during a
requirements engineering process, the conventional ex-ante elicitation would lead to a
considerable effort for re-evaluation of the user’s preferences (for details on the costs
of re-elicitation see [10]. More generally, the adaption of traditional MAUT models
(mostly used in market analysis) does not work well for the dynamic, iterative charac-
ter of requirements engineering.
The underlying reasons for the need of dynamic preference elicitation support can be
found within two commonly cited problems of failing software development projects:
“incomplete requirements” or “changing requirements” [20], [13].

The incompleteness of requirements has diverse causes such as methodological
problems (lack of knowledge of methods or tools), communication problems (incom-
prehension, different terminologies, different backgrounds), and psychological causes
(lack of trust, lack of mutual acceptance, tactics) [3]. The underlying assumption is
that customers know their needs and utter them during requirements elicitation. How-

169

REFSQ 2012 Workshop Proceedings

ever, many requirements are unknown or are not uttered as they seem self-evident to
the customers. For example, a customer would not explicitly demand for an add-on to
text program to have the basic functionality “it must be possible to write text” as this
functionality of the software is expected. Such requirements are difficult to ascertain
by the developer. Furthermore, requirements exist which are not expressed during
requirements elicitation by customers due to a lack of knowledge of possible technol-
ogies (cf. the impact of requirements on the customer satisfaction as a triage of ‘de-
lightes’, ‘satisfiers’, and ‘dissatisfiers’ by Kano [8], [13].

Two substantial causes for requirements changes need to be separated. Firstly, re-
quirements can change as a reaction to a change in the environment (such as changing
markets, business processes, or new laws). Traditional RE methods mostly try to
avoid requirement changes as much as possible and if they occur, try to manage these
changes by thorough formal processes. Later requests for requirements changes are
interpreted as disturbances in the project which lead to corresponding time lags and/or
an increase in costs. Newer RE methods (e.g. in the context of agile software devel-
opment) meet these changes by employing evolutionary methods of development.
Secondly, requirements can change due to technological changes. Many requirements
specifications do not only contain customers’ requirements but already technical
product functions as solutions to implement these requirements. As information tech-
nology undergoes steady improvements changes are inevitable.

In case of incomplete information, Negoisst offers a dynamic preference elicitation
method. This dynamic approach uses two complementary elicitation processes: a fast
preference elicitation method for the initial elicitation and an iterative elicitation
method for refining preferences during the negotiation phase. In the pre-negotiation
phase, Negoisst uses a decompositional, polynomial elicitation method for fast initial
approximation of a user’s utility model. The second elicitation is based on the itera-
tive offer communication process during an ongoing negotiation (or requirements
engineering). Since all of the user’s proposals are feasible, and, to some degree part of
the aspired set of alternatives, an additional decompositional comparison of the user’s
offers helps to detect changes and inconsistencies in the initial utility model.

3.3 Analytical Support

The electronic support tools for analyzing the negotiator's preferences can broadly be
categorized as numerical indicators, graphical representations and verbal suggestions.

(1) Numerical indicators provide a quick rating of the current offer, e.g. total utili-
ty, option valuation, utility tables etc. Negoisst thereby supports partial offer specifi-
cation, that is, if someone does not specify all agenda items (requirements), a utility
range will be displayed for a rough orientation. Figure 3 shows the message exchange
with the total utility rating for each offer on the right.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

170

Fig. 3. Message exchange with utility range attached

(2) Apart from this highly aggregated information, graphical representations provide a
more sophisticated overview of the whole negotiation process. One of the most im-
portant distinctions of the various graphical representations is the degree of confi-
dence concerning private utility information. A history graph (Figure 4) shows the
convergence of the offer communication process using only the negotiator’s own
preferences. On the other hand, a negotiation dance graph (Figure 5) discloses private
utility information from both negotiation sides. With this additional information, a
user can easily identify inefficient outcomes in a requirements engineering process.
The question as to how much private information should be disclosed depends on the
type of negotiation. Since requirements engineering tends to be a highly integrative
negotiation situation, this private information should be disclosed in order to gain a
higher joint outcome (in terms of requirements).

Fig. 4. History Graph Fig. 5. Dance Graph

171

REFSQ 2012 Workshop Proceedings

(3) Additionally, feature-rich negotiation support tools like Negoisst also uses various
tools for verbal suggestions (e.g. mediation, association rule learning results, ...).
Moreover, ex-post analysis tends to optimize the joint outcome, e.g. automatic search
for pareto-efficient solutions.

4 Outlook

Since Negoisst was originally developed as a mere negotiation support system it is
planned to extend the functionalities for requirements engineering threefold.

(1) In the case of drawing up a compulsory contract from a functional specification
document conflicts might arise again due to cost and time constraints for a develop-
ment project: as the implementation of a certain product function to fulfill certain
customers’ needs can be very complex, developers might demand some extra time or
might charge higher rates. Negotiations about the final contract settings become inevi-
table.

(2) The customers’ needs and product/quality functions are part of a document con-
taining the functional specification which is usually set up after the elicitation and
prioritization of requirements. These functions will become part of a contract between
customers and developers, respectively the principal and contractor. Additionally,
aspects of a prototype software requirements specification such as the scope of the
software, important definitions, or constraints [7] should be considered in the RN-
process. These aspects can be seen as part of an agenda, giving rise to an integration
of contract management for the RN-process. With the aid of Negotiation Support
Systems, blueprints of formal contracts can be prebuilt semi-automatically using se-
mantical enrichment of the communication process [19]. This will reduce administra-
tive overhead for the stakeholders and legal representatives.

(3) If viewing requirements engineering as a negotiation process, new or changed
requirements will lead to changes of the negotiation agenda. To clarify which re-
quirement is part of the agenda, i.e. which requirement is necessary, useful, or techni-
cally feasible, the stakeholders have to negotiate about this agenda (typically denoted
as agenda-negotiation or meta-negotiation). Thus, not only contract negotiations (i.e.
business negotiations dealing with requirements and their values such as price as de-
scribed above) but also agenda negotiations in the meaning of negotiations concerning
the addition of requirements and thus extending the agenda must be considered in the
RN-process. This will also affect the deployment of decision support components
since changes in the negotiation agenda will also entail changes in the preference
model. Therefore, in addition to consideration of information asymmetries, an RN-
system also needs to cover CRUD-operations of the negotiation agenda.

Agenda negotiations can take place upfront to set up the negotiation context but
will also be a permanent part of the whole requirements negotiation process. In fact, a
negotiation process in RE will be a continuous process with breaks, i.e. it will start for
the initial requirements; then once new requirements have formed, a new round obvi-
ously based on the previous one will be initiated; the system will be adapted, new
requirements lead to a next negotiation round based on all previous ones and so on.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

172

5 Conclusion

This paper shows a communication-driven approach for requirements engineering in
contrast to holistic process models. Recent developments in negotiation theory can
help achieving not only an effective RE result (a higher joint outcome) but also an
efficient and integrative RE-process. We therefore promote the research approach of
requirements negotiation. In this first iteration of a software artifact, we focused on
two main aspects, namely process definition and the role of asymmetric information.

Regarding the first aspect (process definition), we can see that a communication-
driven approach will lead to an implicit process model instead of providing an explicit
process definition. This gives stakeholders more freedom for their very own way of
RE for the task at hand. Additionally, the participants do not have to learn a specific
process model. On the other hand, in addition to a sophisticated communication sup-
port, one of the main challenges of RN is to provide accurate support tools at the right
time. In the preparation phase, the stakeholders need comprehensive decision support
tools for eliciting their individual requirements. Later, during the ongoing negotiation,
the participants need additional analytical support for reaching an integrative, joint
agreement. Several support tools have been presented either for individual or symmet-
rical analysis of the stakeholders’ requirements.

One issue which should never be neglected in a RE-process is the general problem
of asymmetric information. This requires special attention if requirements elicitation
is not defined by the RE process. We therefore show important factors that need to be
considered in a RN procedure. First, the elicitation procedure needs to support a gen-
eral error for the assessment of specific requirements. Later, during the ongoing
communication process, changes to the initial preference model must be discovered
and then adapted to the current information level. We therefore encourage recent de-
velopments focusing on a dynamic view on decision support.

In addition to these two aspects for negotiating requirements as a task of aligning
the stakeholder’s individual positions, we also discussed the integration of contract
negotiations and agenda negotiations. In current systems the agenda is set up before
the start of the electronic negotiation. Agenda negotiations need to be developed as
they provide the means to discuss the requirements themselves. Such processes need
to be integrated with contract negotiations in which requirements with their values are
exchanged in (counter-) offers.

References

1. Green, P.E. and Srinivasan, V.: Conjoint Analysis in Marketing: New Developments with
Implications for Research and Practice. The Journal of Marketing 54, 4, 3-19 (1990)

2. Grünbacher, P. and Seyff, N.: Requirements Negotiation. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 143–161 Springer, Heidelberg
(2005)

3. Herzwurm, G., Schockert, S., Mellis, W.: Joint requirements engineering. QFD for rapid
customer-focused software and internet-development. Vieweg, Gabler, Braunschweig
(2000)

173

REFSQ 2012 Workshop Proceedings

4. Hickey A.M., Davis, A.M.: Requirements elicitation and elicitation technique selection:
model for two knowledge-intensive software development processes. In: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences, pp.10 (2003)

5. Hevner, A.R., March, S.T. Park, J., Ram, S.: Design science in information systems re-
search. MIS Quarterly, 28, 75-105 (2004)

6. Holsapple, C.W., Singh, M.: Electronic Commerce: From a Definitional Taxonomy To-
ward a Knowledge-Management View. Journal of Organizational Computing and Elec-
tronic Commerce 10, 3, 149-170 (2003)

7. IEEE Std 830-1998. Software Requirements Specification (1998)
8. Kano, N., Nobuhiku, S., Fumio, T., Tsuji, S.: Attractive quality and must-be-quality. Jour-

nal of Japanese Society for Quality Control 14, 2, 39–48 (1984)
9. Kilgour, D., Eden, C. (eds.): Handbook of Group Decision and Negotiation. Springer,

Dordrecht (2010)
10. Köhne, F., Schoop, M., Staskiewicz, D.: Decision Support in Electronic Negotiation Sys-

tems - New challenges. In: Proceedings of the IFIP DSS2004 Conference (2004)
11. Luce, R. and Tukey, J.: Simultaneous Conjoint Measurement. Journal of Mathematical

Psychology 1, 1 (1964)
12. McCullough, D.: Trade-off analysis: a survey of commercially available techniques.

Quirk's Marketing Research Review (1998)
13. Pohl, K.: Requirements engineering. Fundamentals, principles, and techniques. Springer,

Berlin (2010)
14. Reiser, A.: The use of dynamic preference elicitation for negotiations with incomplete or

missing information (2010)
15. Saaty, T.: The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation.

McGraw-Hill, New York (1980)
16. Saaty, T.: The Analytic Hierarchy and Analytic Network Processes for the Measurement

of Intangible Criteria and for Decision-Making. In: Figueira, J., Greco, S., Ehrgott, M.
(eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 345–408. Spring-
er, London (2005)

17. Schoop, M.: Support of Complex Electronic Negotiation. In: Kilgour, D., Eden, C. (eds.)
Handbook of Group Decision and Negotiation, pp. 409–423. Springer, Dordrecht (2010)

18. Schoop, M., Jertila, A., List, T.: Negoisst: a negotiation support system for electronic busi-
ness-to-business negotiations in e-commerce. Data Knowl. Eng. 47, 3, 371–401 (2003)

19. Staskiewicz, D.: Document-centred electronic negotiations. Munich (2009)
20. The Standish Group: Chatering the Seas of Information Technology: Chaos (1994)
21. Tutzauer, F.: Toughness in Integrative Bargaining. The Journal of Communication 43, 1,

46–62 (1993)

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

174

Tackling Prioritization in
Business-Process-Driven Software Development

Norman Riegel1, Joerg Doerr1, Oliver Hummel2

1Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{norman.riegel, joerg.doerr}@iese.fraunhofer.de

2Software Engineering Group, University of Mannheim, 68131 Mannheim, Germany
hummel@informatik.uni-mannheim.de

Abstract. Information system (IS) development projects in enterprises are often
aligned with business process improvement programs aimed at optimizing
business performance. As experienced in our projects, decision makers need
better support in order to enable them to assess the best way for spending the
available resources. In the area of requirements engineering (RE) and release
planning, prioritization is an established strategy for achieving this goal.
Prioritization approaches currently found in the literature, however, do not
consider all idiosyncrasies of business-process-driven software development.
Hence, in this paper we analyze the suitability of state-of-the-art prioritization
approaches based on the characteristics of typical business-process-driven
software development projects. We identify the shortcomings of current
approaches and outline our vision of how to overcome them in the future.

Keywords: Requirements Engineering, Requirements Prioritization, Require-
ments Elicitation, Business Process Management, Information Systems

1 Introduction

The purpose of many information system (IS) development projects is to build
software to better support an enterprise’s business processes and optimize business
performance. To achieve this, business processes have to be identified, analyzed, and
investigated regarding potential improvements. Corresponding software requirements
must then be derived for the development of the supporting IS. In such a scenario,
business process management (BPM) and requirements engineering (RE) are strongly
intertwined. Hence, in such a setting, RE activities cannot be carried out
independently, as they are affected by business process reengineering and improve-
ment efforts [2]. We use the term business-process-driven requirements engineering
(BPRE) to describe an RE process that is based on the business processes and
workflows of an enterprise and derives software requirements from them in a
systematical manner (cf., e.g., [2][3]). During several of our industry projects, we
recognized that decision makers had difficulties in applying common prioritization
approaches in BPRE settings because they could not be tailored for this context. This

175

REFSQ 2012 Workshop Proceedings

led to wasted time and effort spent on numerous (RE) activities of minor importance:
Conducting a workshop on optimizing a business process that later turns out to
contribute only low-priority software requirements is an example of such an
unpleasant situation. The remainder of this paper is structured as follows: Section 2
sketches the characteristics and challenges of BPRE projects and maps them to
requirements for an appropriate prioritization approach; in section 3, existing
prioritization approaches are assessed against these requirements; section 4 discusses
the outcome and presents our vision for a solution idea, and section 5 summarizes our
contribution.

2 Characteristics and challenges of BPRE

Our previous work on prioritizing requirements in software development (cf. [2])
already presented some ideas on how to tackle the challenge of requirements
prioritization in the context of BPRE. Following up on that, in this section we sketch
the typical characteristics and challenges we have identified for requirements
prioritization in this context. Based on this, we systematically derive requirements
that a prioritization approach for BPRE should support in order to be applicable in
such a setting (in accordance with the general selection process described in [7]).
Issue (1): Typically, BPRE projects are characterized by high complexity – even in
small and medium-sized enterprises it is not uncommon to have different business
areas containing several dozen business processes, which in turn consist of numerous
business activities that need to be considered for optimization [2] (Fig. 1 exemplarily
shows a hierarchy of different issues of interest). It is obvious that it does not make
sense to refine each feasible software design, as the required effort would simply be
too large. Eliciting the requirements in an efficient way (i.e., in the optimal order)
while also handling the challenge of the large number of possible system designs [6]
(e.g., transformation from as-is to to-be or different levels of automation) is a
challenge for every requirements engineer.

 Req. 1: The prioritization approach should guide the elicitation in order to
make it as efficient as possible, while not lowering final system quality at the
same time.

Issue (2): During requirements elicitation, business processes and included activities
are analyzed systematically and more detailed requirements are derived [6]. Thus, the
requirements form a hierarchy, i.e., dependencies are created from abstract business
processes down to detailed system functions and other additional requirements [2].

� Req. 2: The prioritization approach should support continuous / consistent
prioritization across all levels of abstraction by supporting hierarchies and ideally
also other dependencies.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

176

Fig. 1. Guidance for requirements elicitation using prioritization.

Issue (3): As a hierarchy of requirements is created, different requirements types (i.e.,
requirements concerning different issues) on different levels of abstraction are elicited
(e.g., business processes, business activities, derived system functions, etc. [2]).

� Req. 3: The prioritization approach should take into account the idiosyncrasies
of the requirements types (e.g., information content that is available on a particular
level of abstraction).

Issue (4): The interests of several stakeholders and roles within the business
processes have to be considered. This does not only include the respective process
participants (i.e., potential users of the IS to be built) but also other process-specific
roles, such as process manager and process owner responsible for the process and its
regulation, as well as process-spanning (cross-cutting) roles like process developer
(responsible for implementation) and process controller (responsible for process
measurement and assessment), or management [17]. Clearly, these roles might have
contradicting objectives. For example, a process participant may prefer to have his
tasks made easier, while a process owner may prefer to increase process performance.

� Req. 4: The prioritization approach should support the assessment of
requirements by different (especially BPM / BPRE) roles.
� Req. 5: The prioritization approach should support requirements being assessed
in different (variable) dimensions in order to determine their actual business value.

Issue (5): In the context of BPM and BPRE, objective process performance figures
(e.g., cycle time, number of errors) are often of particular interest [17], as they are
more likely to create confidence for decisions than mere subjective assessments.

� Req. 6: The prioritization approach should offer the possibility to include
objective value dimensions for determining the priority of requirements.

Issue (6): As stated above, it is typical for BPRE projects that not only one particular
field of duties, but many different processes are of interest for optimization. Thus an
iterative and also incremental procedure [16] is often performed and recommended,
where requirements are elicited successively and the realization of multiple business

177

REFSQ 2012 Workshop Proceedings

processes is executed contemporaneously. This also provides new insights that may
change the priority of existing requirements (e.g., a cross-cutting feature that becomes
more important because it is needed in different business processes).

� Req. 7: The prioritization approach should support (simple) re-prioritization
and cross-cutting issues as requirements can change and new ones emerge.

Issue (7): Nowadays, it is common to adopt business process management or
workflow management systems (BPMS / WFMS) simplifying the implementation of
business processes (as opposed to traditional implementation without a workflow
engine) [17] in software. As these systems offer a variety of different features that are
common to several business processes, the capabilities of these systems already need
to be considered during BPRE.

� Req. 8: The prioritization approach should consider existing features of the
infrastructure, as they may affect the requirements (e.g., lowered costs or risks).

3 Assessing state-of-the-art prioritization approaches for BPRE

In this section, we present an assessment of state-of-the-art prioritization approaches
with a special focus on the support for BPRE prioritization requirements as derived in
section 2. Table 1 shows the result for the most promising approaches1, based on an
expert assessment of the approaches’ description found in the literature.

Table 1. BPRE support of promising prioritization approaches.

Prioritization approach /
Requirements

Req
1

Req
2

Req
3

Req
4

Req
5

Req
6

Req
7

Req
8

Cost-Benefit Analysis [8] - - - o + + - -
Planning Game [9] o - - o - - o -
Hierarchy AHP [4] - + - o + o - -
Minimal Spanning Tree Matrix [4] - o - o + o - -
Value-oriented HCV [10] - + - o + o - -
Cost-value Approach [5] - o - o + o - -
Quantitative WinWin [11] - + - o - - + -
Moisiadis Framework [12] o o o o - + - -
Fuzzy Decision Making [13] - - o o + - o -
Interactive GA [14] - - - - + o o -
Autom. Requirements Triage [15] - o o - - - + o
Legend: - = not supported, o = partly supported or simple adaptation seems possible, + =
supported

1 Due to space limitations, we can only show an excerpt of all the approaches we analyzed.

Additional approaches that were assessed include: Numeral Assignment, Cumulative Voting,
Priority Groups, Top 10 Requirements, Analytic Hierarchy Process (AHP), Bubble Sort,
Binary Search Tree, Hierarchical Cumulative Voting (HCV), Wieger’s Method, Outranking,
Value Oriented Prioritization (VOP), Kano Model, Value Analysis, EVOLVE, Priority
Assessment / QFD, Value Based Fuzzy Requirements Prioritization / VIRP, Distributed
Collaborative Prioritization, What-if Analysis, B-Tree Prioritization and Binary Priority List.

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

178

4 Discussion and solution proposal

As already stated by Herrmann and Daneva [1], most prioritization methods support
only one particular part of a larger prioritization process. Even though no detailed
discussion of each analyzed approach is possible here due to space restrictions, our
analysis has shown that none of the regarded approaches can support all requirements
stated in section 2. This is not a surprising result, as most approaches are only
designed to solve general requirements prioritization problems. Thus, the selection
and application of a specific approach for a particular project strongly depends on the
application domain and the prioritization problem at hand. The prioritization problem
in BPRE is complex and thus solving it is not possible by applying any existing
approach without modifications. Req. 1 is practically not supported by any of the
approaches since they require a final set of requirements and can thus only be applied
after requirements elicitation. Fortunately, several approaches support hierarchical
prioritization (Req. 2) out of the box. Not surprisingly, Req. 3 is also not supported
widely as most approaches only differentiate between requirements on different levels
of abstraction (e.g., high level and low level), but do not consider special information
available on the different levels (e.g., the number of actors in a use case, as in the
work of Moisiadis [12]). Req. 4 seems to be supported best by available approaches,
but only for multiple stakeholders in general, not specialized for different (BPRE)
roles. Req. 5 and Req. 6 are also supported by several approaches, although some
need to be adapted to fulfill these requirements completely. Req. 7, in turn, is almost
not supported again. Here, sophisticated approaches like Quantitative WinWin [11]
explicitly include re-prioritization; however, in most of the other cases, it is hard to do
re-prioritization without extensions. Finally, Req. 8 is not supported by any
investigated approach, only Lauren et al [15] mention that relations to existing
features “could also be considered“.
These results suggest that a prioritization framework is needed for supporting all
requirements rather than a single prioritization approach. Based on this insight, we
recognize some necessary building blocks to be integrated in such a framework.
These are: (1) a set of prioritization approaches that satisfy the need for hierarchical
prioritization while considering existing COTS features (referring to Req. 2, Req 8.);
(2) a conceptual issue model that contains the issues (considered in different
requirement types) relevant in BPRE, their relationships among each other, and issue-
specific information relevant for prioritization (Req. 3); (3) a value model that
consists of objective (measured) and subjective (assessed by stakeholders) attributes /
criteria needed to assess the different requirement artifacts appropriately (Req. 5, Req.
6); (4) a role model that describes the roles relevant for prioritizing the different
requirements artifacts (Req. 4); (5) tool support, especially for facilitating re-
prioritization (Req. 7), and (6) the BPRE context in which the proposed framework
will be applied for guiding elicitation (Req. 1).

5 Summary

Requirements engineers and decision makers in business-process-driven software

179

REFSQ 2012 Workshop Proceedings

development face the challenge of having to decide which requirements are actually
relevant for early business success and should be considered first during elicitation
and analysis activities. Our analysis shows that existing prioritization approaches do
not support all requirements of typical BPRE projects. In future work, we will further
elaborate on the building blocks we have proposed to provide an appropriate solution.

Acknowledgments: The work presented in this paper was partly performed in the
context of the Software-Cluster project EMERGENT | SWINNG (www.software-
cluster.org). It was partially funded by the German Federal Ministry of Education and
Research (BMBF) under grant no. "01IC10S01"|“01|C10S05”. The authors assume
responsibility for the content.

References

1. Herrmann, A., Daneva, M.: Requirements Prioritization Based on Benefit and Cost
Prediction: An Agenda for Future Research. In: Proc. of RE ‘08, pp. 125-134. IEEE
Computer Society (Sep. 2008)

2. Riegel, N., Adam, S., Uenalan, O.: Integrating Prioritization into Business Process-driven
Requirements Engineering. In: REFSQ ‘10 - Workshop Proceedings, Essen (2010)

3. De la Vara, J. S., Díaz, J. S.: Business process-driven requirements engineering: a goal-
based approach. In: Proc. of BPMDS '07, Trondheim (2007)

4. Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. In: Information and Software Technology 39, pp. 939-947. (1998)

5. Karlsson J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. In: IEEE
Software 14, vol. 5, pp. 67-74. (1997)

6. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G.: Requirements Engineering Based on
Business Process Models: A Case Study. In: Proc. of 13th EDOCW, pp. 320-327. (2009)

7. Salinesi, C., Kornyshova, E.: Choosing a Prioritization Method – Case of IS Security
Improvement. In: CAISE ´06 Forum Proceedings, (2006)

8. Nas, T.F.: Cost-Benefit Analysis: Theory and Application. Thousand Oaks, Sage (1996)
9. Beck, K.: Extreme programming explained. Addison-Wesley, Upper Saddle River (2000)
10. Mohamed, A.S.I., El-Maddah, B.I.A., Wahba, C.A.M.: Criteria-Based Requirements

Prioritization for Software Product Management. In: Proc. of SERP ‘08, pp. 587-593.
(2008)

11. Ruhe, G., Eberlein, A., Pfahl, D.: Trade-off analysis for requirements selection. In: Int.
Journal of Software Engineering and Knowledge Eng., vol. 13, no.4, pp. 345-366. (2003)

12. Moisiadis, F.: The fundamentals of prioritizing requirements. In: Proc. of Systems
Engineering, Test & Evaluation Conference. (2002)

13. Gaur, V., Soni, A.: An Integrated Approach to Prioritize Requirements using Fuzzy
Decision Making. In: Int. Journal of Eng. and Technology, vol. 2, no.4, pp. 320-328.
(2010)

14. Tonella, P., Susi, A., Palma, F.: Using Interactive GA for Requirements Prioritization. In:
Proc. of 2nd Int. Symposium on Search Based Software Engineering, pp. 57- 66. (2010)

15. Laurent, P., Cleland-Huang, J., Duan, C.: Towards Automated Requirements Triage. In:
Proc. of RE ´07, pp. 131-140. (2007)

16. Cohn, M.: Agile Estimating and Planning. Pearson, Upper Saddle River, NJ (2006)
17. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,

Berlin (2007)

Requirements Prioritization for Customer Oriented Software Development (RePriCo)

180

6 International Workshop on Software Product Management (IWSPM)

Editors

Richard Berntsson Svensson
Lund University, Sweden, richard.berntsson_svensson@cs.lth.se

Marjo Kauppinen
Aalto University, Finland, marjo.kauppinen@tkk.fi

Inge van de Weerd
VU University Amsterdam, the Netherlands, i.vande.weerd@vu.nl

Workshop Programme

 6th International Workshop on Software Product Management (IWSPM 2012)
Richard Berntsson Svensson, Marjo Kauppinen, and Inge van de Weerd

182

 Software Product Management and Agility
Gerald Heller, and Hans-Bernd Kittlaus

185

 Strategic Release Planning Challenges for Global Information Systems – A Position Paper
Gabriele Zorn-Pauli, Barbara Paech and Jens Wittkopf

186

 The Influence of Internationalization on Software Product Management
Vincent Blijleven, Farhad Andalibi, Albert Pap, and Sjaak Brinkkemper

192

 Managing the Product Release Cycle Ten factors determining success in project
management of product release cycles
Suzanne Gietema, and Sjaak Brinkkemper

207

 Software Release Planning Incorporating Technological Change – The Case of Considering
Software Inspections
S. M. Didar-Al-Alam, Junji Zhi, and Günther Ruhe

222

 Are my Features Innovative Enough? – A Multi-Variable Innovation Strategy Model
Proposal
Björn Regnell

237

 Benchmarking Bundling Practices in the Software Industry
Joey van Angeren, Rick van Bommel, Catherine Arupia, and Sjaak Brinkkemper

243

REFSQ 2012 Workshop Proceedings

181

6th International Workshop on Software Product
Management (IWSPM 2012)

Richard Berntsson Svensson1, Marjo Kauppinen2, Inge van de Weerd3

1Lund University, Sweden, richard.berntsson_svensson@cs.lth.se
2Aalto University, Finland, marjo.kauppinen@tkk.fi

3VU University Amsterdam, the Netherlands, i.vande.weerd@vu.nl

Abstract. Product success depends on skilled and competent product manage-
ment. In essence, a product manager decides what functionality and quality a
product should offer, to which customers, while minimizing the time-to-market
and assuring a winning business case. Software product management includes
working with requirements, release definitions, product lifecycles, the creation
and interpretation of product strategies, balancing long-term technology push
with shorter-term market-pull, and assuring a successful business case by se-
lecting the right requirement for realization. The 6th International Workshop on
Software Product Management (IWSPM 2012) was held at the
18th International Working Conference on Requirements Engineering: Founda-
tion for Software Quality (REFSQ’12) in Essen, Germany. The workshop in-
cluded an invited talk from senior product managers, paper presentations, and
discussion on state of knowledge of software product management.

Keywords: software product management; release planning; product release;
building practices; product release cycle.

1 Introduction

Product success depends on skilled and competent product management. In essence, a
product manager decides what functionality and quality a product should offer, to
which customers, while minimizing the time-to-market and assuring a winning busi-
ness case.

Software product management includes working with requirements, release defini-
tions, product lifecycles, the creation and interpretation of product strategies, balanc-
ing long-term technology push with shorter-term market-pull, and assuring a success-
ful business case by selecting the right requirement for realization.

2 Workshop Goals and Themes

After the success of previous workshops the 6th International Workshop on Software
Product Management (IWSPM 2012) aimed at brining practitioners and research
experts together for exchanging ideas, knowledge and experience, and at setting a

182

International Workshop on Software Product Management (IWSPM)

research agenda based on industry needs. More specifically, IWSPM 2012 pursued
the following goals:

• Develop the software product management body of knowledge; identify chal-
lenges and future avenues for research relevant for both academia and indus-
try.

• Strengthen software product management as a research field within the greater
field of software engineering and business management.

• Provide software product managers and researchers a dedicated forum for ex-
changing ideas and best practices fostering industry-academia collaboration.

The theme of IWSPM 2012 was kept in line with the theme of IWSPM 2011, and
the themes of interest for paper submission included, but not limited to:

• Product management for software, software-intensive systems, information
technology, software as a service, and cloud computing.

• Product portfolios and life-cycles: managing software product innovation
based on open source components while providing balanced contribution vs.
differentiation strategies.

• Product management in growing size and complexity, ensuring the intended
software product qualities with balance between control and innovation.

• Product management for rapidly changing software products, methods for
managing the quantity and paste of changes in the most demanding software
markets.

• Product planning: product visioning, strategy, roadmapping, and release defini-
tion.

• Collaboration in software ecosystems and supply networks: subcontracting,
partnering, tendering, negotiation, coordination, and control.

• Business aspects: business case development, business planning, and market-
ing.

• Product management environments: SME’s, large-scale organizations, cross-
company ecosystems, and global settings.

• Product management performance: measurement, development, and improve-
ment of product management processes, practices, skills, and competence.

• Tools for product management: innovative SPM tooling, tool evaluation, tools
in industry.

Each paper received reviews by three different members of the Program Commit-
tee. Program Committee members did not review papers from authors where they had
a conflict of interest, i.e. where a Program Committee member and an author came
from the same organization or have co-authored papers. Thirteen papers were submit-
ted and from these submissions, four full research papers and two short papers were
accepted.

3 Workshop Program

The IWSPM 2012 workshop program covered sessions that shed light on the software
product management discipline. The presented papers are included in the IWSPM
2012 proceedings.

Blijleven, Andalibi, Pap and Brinkkemper carried out a study to the influence of
internationalization on SPM. They found that no cookie-cutter approaches exist when

183

REFSQ 2012 Workshop Proceedings

it comes to performing product management in international markets, but that there
are several factors that are important to consider, such as centrally stored require-
ments that are accessible to all relevant stakeholders and well-defined and structured
communication channels to overcome geographical distances.

During the workshop, two new approaches for release planning were presented.
First, Regnell proposed in his work the InnoReap model that can be used to analyze
different release planning strategies, in which a trade-off can be made between feature
innovativeness and other innovation-related feature properties, such as effort, resource
allocation span, and revenue. Secondly, Didar-Al-Alam, Zhi and Ruhe presented
EVOLVEII, a release planning approach that considers the impact of technological
change by measuring the revised effort needed to perform develop-ment activities.

Van Angeren, van Bommel, Arupia and Brinkkemper investigated the the use and
acceptance of bundling as a pricing tool within the software industry. They found that
the majority of the companies use bundling as a pricing, delivery and marketing
mechanism, which an average of five components per bundle.

Gietema and Brinkkemper carried out a literature review and case studies to find of
project management in the product release cycle. This resulted in a list of 10 factors,
some related to project management, such as keeping a strict planning, and others
more related to the development of product releases, such as managing product inter-
dependencies.

Finally, Zorn-Pauli, Paech and Wittkopf presented an overview challenges for stra-
tegic release planning of global information systems gathered from an industrial com-
pany in the health care domain and how these challenges are covered in academic
literature. They found that many of these challenges are currently not addresses in
existing work, and that further research is necessary.

4 Acknowledgements

The sixth International Workshop on Software Product Management (IWSPM 2012)
could not have been held without the help and support of a wide range of contributors.
IWSPM 2012 was organized by Richard Berntsson Svensson, Marjo Kauppinen, and
Inge van de Weerd who acted as organizing co-chairs and program co-chairs. The
advisory board consisted of Sjaak Brinkkemper, Christof Ebert, Tony Gorschek, and
Samuel Fricker, who helped ensure continuity of the IWSPM workshop series.

The program committee has contributed with timely and good quality reviews.
Members of the program committee have been: Sebastian Barney, David Callele, Jörg
Dörr, Christof Ebert, Remo Ferrari, Tony Gorschek, Paul Gruenbacher, Andrea
Herrmann, Slinger Jansen, Lena Karlsson, Hans-Bernd Kittlaus, Casper Lassenius,
Nazim Madhavji, Sten Minör, Andriy Miranskyy, Björn Regnell, Guente Ruhe, Klaus
Schmid, Kari Smolander, Pasi Tyrväinen, Tony Wesserman, and Krzysztof Wnuk.

We would like to thank the authors that submitted papers, the presenters who also
opposed papers, and the participants of the workshop who contributed with valuable
feedback by sharing their expertise, ideas, and opinions.

184

International Workshop on Software Product Management (IWSPM)

Software Product Management and Agility

Gerald Heller¹, Hans-Bernd Kittlaus²

¹ Software.Process.Management
Tannenstraße 8, 71126 Gäufelden, Germany

gerald.heller@swpm.de

²InnoTivum Consulting
Im Sand 86, 53619 Rheinbreitbach, Germany

hbk@innotivum.com

Abstract:

Agile software development has been established in the last 10 years as a
popular development approach. In a time when speed of change is of utmost
importance, agile approaches are often the most appropriate roads to
success. They do not only change the way Development works, but they
also impact other parties involved in projects, in particular the software
product manager. Software companies are faced with the question how
software product management and agile development can work together in
an optimal way. Who is responsible for requirements? Is the software
product manager automatically the designated “product owner” (Scrum)?
Or is “product owner” a new and separate role? Does he/she replace the
software product manager?

The Software Product Management Framework which has been developed
by the „International Software Product Management Association“
(www.ispma.org) provides orientation. It can be used as a helpful tool to
make the change process towards agile product management successful.

Gerald Heller is Principal Consultant of Software.Process.Management
(www.swpm.de). Er has more than 20 years of experience in global
software product development. His focus is on requirements and test
management in iterative incremental development processes. As a
practitioner he is experienced in applying development methods with
application lifecycle tools. Gerald Heller has published in the trade press
and frequently gives presentations on international conferences. He is
Diplom-Informatiker and founding member of ISPMA, and member of
IEEE, GI and ASQF.

Hans-Bernd Kittlaus is the owner and CEO of InnoTivum Consulting
(www.innotivum.com) and works as consultant, interim manager and
trainer for software organizations in the areas of software product
management, SaaS, IT strategy and business process management. Before
he was Director of SIZ GmbH, Bonn, Germany (German Savings Banks
Organization) and Head of Software Product Management and
Development units of IBM. He has published numerous articles and books,
a.o. “Software Product Management and Pricing – Key Success Factors for
All Software Organizations”, Springer, 2009. He is Diplom-Informatiker
and certified PRINCE2 Practitioner, founding board member of ISPMA
(International Software Product Management Association), and member of
ACM and GI.

185

REFSQ 2012 Workshop Proceedings

Strategic Release Planning Challenges for Global
Information Systems – A Position Paper

Gabriele Zorn-Pauli1, Barbara Paech1 and Jens Wittkopf2

1 University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{zorn-pauli, paech}@informatik.uni-heidelberg.de

2 Roche Diagnostics GmbH, Sandhofer Strasse 116, 68305 Mannheim, Germany
jens.wittkopf@roche.com

Abstract. In global companies there is a shift from local to global in-
formation systems that need to satisfy the needs of many different di-
visions all over the world. This raises particular problems for strategic
release planning, as the succession of releases needs to satisfy multiple
business strategies of several countries. Identification of large-scale busi-
ness aspect similarities, and thus synergies between these strategies, is a
strong contributor to success. Features are a common way to represent
early requirements or requirement bundles during strategic release plan-
ning. Planning global features requires a particular process regarding
capturing and selection validation. The goal of this paper is to present
challenges for strategic release planning of global information systems
gathered from an industrial company in the health care domain. A pre-
liminary literature review investigates to what extent these challenges
are already recognized or solved in academia.

Keywords: strategic release planning, product roadmapping, long-term
feature selection, global information systems

1 Introduction

The development of information systems (IS) for global companies is changing
from locally towards globally oriented customer-specific development, which is
reflected by the transition from locally to globally used IS. Globally used IS
(abbreviated to global IS in the following) means that due to the globalization
of companies, products, and markets the IS needs to satisfy country specific
needs of a geographically distributed company. The different company country
sites follow to some extent the same global company strategy, but in addition
apply for different business strategies depending on country specific settings such
as markets, competitors, or regulatory aspects.

Therefore, the integration of multiple business strategies into one global IS
imposes major challenges for strategic release planning (SRP). Furthermore,
SRP of global IS aims at finding the largest common overlap of multiple busi-
ness strategies comprising an optimal set of features regarding costs and available
resources. For that, important decisions are necessary: Which features are useful

186

International Workshop on Software Product Management (IWSPM)

or necessary for most of the company sites and should become a standard func-
tionality in the global IS? Which of them concern only locally driven needs and
should be handled separately?

Accordingly, global companies need a standardized global IS that still pro-
vides the possibility of locally driven customizations. Therefore, a corresponding
SRP process for global IS is required.

The motivation for companies to shift from local to global IS is primarily
based on organizational aspects such as efficiency enhancement and improvement
of support. Global IS support (1) global usage of applications, (2) elimination of
inconsistent data resulting from redundant systems, e.g. when several systems in
different countries support the same processes and (3) interoperability of business
across different business segments and countries by cross application and global
master data management.

Within this paper we present challenges for strategic release planning of
global IS gathered from an industrial company in the health care domain.

This paper is organized as follows: Section 2 provides background information
regarding strategic release planning, Section 3 describes the industrial context
and the identified challenges. Section 4 discusses related work and Section 5
concludes the paper.

2 Strategic Release Planning

SRP, also called product or release roadmapping [7] aims at long-term feature
assignment to subsequent releases fulfilling technical, resource, risk and budget
constraints. In contrast, operational release planning focuses only on the devel-
opment of the next software release [11]. The output of the SRP process is a
roadmap document that comprises the future planned features for the software
product and is used for communication and risk or budget estimations. Features
represent the information technology (IT) view of high-level business require-
ments derived from business topics. Due to the long-term planning of SRP the
business needs are not specified in detail and therefore the feature specifications
either. As a result, SRP has to cope with two crucial issues: (a) fuzzy feature
specifications, where implementation risks and effort are difficult to estimate
and (b) continuous re-planning needs, because of the persistent requests of the
customer for new features or the revision of existing ones.

3 Strategic Release Planning Challenges in Industry

In this section the difficulties for SRP of global IS in the context of a specific
company are explored.

3.1 Global SRP in the Health Care Domain: An Example Company

The company under consideration is active in the health care domain operating
globally in 56 countries. Its global IS is developed by an in-house IT department

187

REFSQ 2012 Workshop Proceedings

and comprises an evolving customer relationship management (CRM) system
with country specific local implementations. The CRM system stakeholders are
segmented in different company business units such as sales, marketing or ser-
vice units. Altogether that constitutes a heterogeneous group of stakeholders,
which have different business unit priorities. CRM system roadmaps are cre-
ated per business unit by so called Change Advisory Boards (CABs) where the
board members involve IT people and business unit representatives comprising
the respective key stakeholder in the different countries. Priorities of the specific
business units are defined by a company panel and depend on the governance
structure. Still, these priorities are not static and can change due to different
reasons such as changes in the market or the need to integrate acquired compa-
nies.

The elements of a typical roadmap are high-level features, which represent
the IT view on the according business topics (e.g. the topic interoperability of
business across different countries results in a master data management feature)
associated with a time frame and cost estimations. These high-level features are
derived from two different channels. The first channel is business strategy driven
based on changing markets, regulatory law or new technology capabilities. The
second channel is end user feedback driven where the end users of the IS raise
bug, feature or change requests. These requests encompass a pool of requirements
of different abstraction levels and are used by IT to suggest further features.
Therefore, feature creation is done top-down by refining business topics into
features and bottom-up by bundling related low-level requirements into features.

Strategic release planning considers a time horizon of three years that com-
prises typically two release cycles per year. The focus of SRP activities is on
new features neglecting the validation of existing features in terms of usage and
suitability.

Since local impacts on a global IS for health care business are very strong, the
company aims at providing transnational IS which are oriented on regions such
as Asia Pacific and Japan. These regional solutions cluster countries based on
geographic distribution and similar market environments. Customization based
on regions is assuming that countries, sharing similar markets, also share similar
customization needs. At this point software product line [10] concepts seem to
be appropriate, but there are several reasons why software product line develop-
ment is not possible or difficult in this company. One reason is that the existing
software architecture is not suitable. Another reason is that the company wishes
to limit the IS variability and not to encourage it.

3.2 Identified Challenges of Global Strategic Release Planning

The following challenges regarding SRP have been identified together with the
health care company and are discussed in this section.

The major problem of SRP for a global IS, based on the authors experiences
in the health care domain, is to balance standardization and customization pos-
sibilities of the IS. On the one side standardization of the IS reduces costs for

188

International Workshop on Software Product Management (IWSPM)

planning, implementation and maintenance, but decreases stakeholder satisfac-
tion, since only the business topics common to all stakeholders are considered.
On the other side, there is still a need to be able to customize the IS due to
country specific needs. In particular, this entails the following four challenges,
which may be also common to other domains.

(C1) Identification of Business Strategy Similarities. So far different
company country sites have their own local solution without taking advantage
of synergies. Examples for such synergies are large-scale reuse similar to product
line concepts [9] or identification of business topics that are addressed by many
countries and therefore of high priority. So far, the company has managed to
integrate multiple business strategies of a small number of countries, by small
adaptations of the processes used for local systems. However, since business is an
inconsistent environment, the comparison and linking of multiple business strate-
gies are difficult and complex. Thus, for many different countries more powerful
methods are needed to support decisions during the strategic release planning
and re-planning process for global IS to achieve an applicable combination of
customization and standardization capabilities.

(C2) Common Understanding of Global Features. Using global features
for release planning requires that several countries must have a common under-
standing of the features and their relation to the countries own business strategy.
Furthermore, during global SRP and alignment with a huge number of hetero-
geneous stakeholder groups the business topics, mostly represented as features,
have to be organized and linked more business oriented. Therefore, the chal-
lenge is to utilize business topics for feature creation to get a closer link between
business strategies and planned IS.

(C3) Continuous Validation of Roadmaps against Multiple Business
Strategies. A roadmap is a living document reflecting the continuous change of
business and IS aspects over time. This requires a continuous validation process
of the roadmap elements such as selected features against business objectives.
A close link between business strategies and planned IS (see C2) is necessary to
validate a roadmap against the strategy. Clearly, for multiple business strategies
the validation task gets more complex and difficult, as the number of changes
is multiple. For example, it is difficult to decide what the right frequency for
roadmap validation is or which events call for a re-validation.

(C4) Missing Hybrid Role: Business Engineer vs. Software Product
Manager. Planning and developing global IS is a difficult and complex task
that requires both deep knowledge about business aspects (e.g. strategies or pro-
cesses) and technology aspects (e.g. possible mobile data and application access).
It is important to have one role responsible for this global SRP. In particular, the

189

REFSQ 2012 Workshop Proceedings

required role would be responsible for the development of new business strate-
gies or models triggered through new IS capabilities or business environment
changes (e.g. globalization of markets). This entails that IT takes over business
responsibility, which is not always desired by the business. Therefore, a hybrid
role, comprising both business and IT power, could encourage the next steps to
harmonize business development and according IS evolution.

4 Related Work

In literature there are several approaches and models regarding the SRP process,
see [13]. However, all of these approaches neglect the global context of system
usage. Suomalainen et al. [12] provide a common product roadmapping process
and identified roadmapping process stakeholder. The described SRP process aims
at standardized products without considering customization opportunities. [1]
introduces a productization process that describes the transition from develop-
ing customer-specific software to a standard software product. However, e.g. C1
(business strategy similarity detection) is not supported or considered. Several
approaches focus on the enhanced linkage of the business view to the IT view
that is part of C2 by aligning business objectives with requirements [6][2][3][5].
Nevertheless, the aspect of global requirements or multiple country business
objectives is missing. Integration of variability-based feature modeling during
release planning is provided by [4] using feature trees to structure requirements.
However, a linking of the features to business objectives for validation of business
objective fulfillment (validation according to C3) is not addressed. Related to
software product management there exists the role of the product manager which
is responsible for creating and maintaining the release roadmaps [8]. It is not
clear which additional responsibilities are necessary to fulfill the missing role
described in C4.

5 Conclusion

This position paper presented the challenges for SRP of global IS from an in-
dustrial perspective. The major problem is balancing standardization and cus-
tomization possibilities of the IS. For this problem four challenges were identified
in a company in the health care domain. A preliminary literature review showed
that the problems of global SRP are not addressed in research. It is the aim of
our future work to define and evaluate a method for global SRP.

References

1. Artz, P., Weerd, I., Brinkkemper, S.: Productization: Transforming from devel-
oping customer-specific software to product software, Lecture Notes in Business
Information Processing, vol. 51, pp. 90–102. Springer Berlin Heidelberg (2010)

190

International Workshop on Software Product Management (IWSPM)

2. Aslam, K., Khurum, M.: A Model for Early Requirements Triage and Selection
Utilizing Product Strategies. In: 14th Asia-Pacific Software Engineering Conference
(APSEC ’07). pp. 97–104. IEEE Computer Society, Nagoya, Japan (2007)

3. Aurum, A., Wohlin, C.: Aligning requirements with business objectives: A frame-
work for requirements engineering decisions. In: Requirements Engineering Deci-
sion Support Workshop (REDECS’05). Paris, France (Sept 2005)

4. Fricker, S., Schumacher, S.: Variability-based release planning. In: Regnell, B.,
Weerd, I., Troyer, O. (eds.) 2nd International Conference on Software Business
(ICSOB’11). Lecture Notes in Business Information Processing, vol. 80, pp. 181–
186. Springer, Berlin, Heidelberg (2011)

5. Kauppinen, M., Savolainen, J., Lehtola, L., Komssi, M., Tohonen, H., Davis, A.:
From Feature Development to Customer Value Creation. In: 17th IEEE Interna-
tional Requirements Engineering Conference (RE’09). pp. 275–280. IEEE (2009)

6. Khurum, M., Gorschek, T.: A method for alignment evaluation of product strate-
gies among stakeholders (MASS) in software intensive product development. Jour-
nal of Software Maintenance and Evolution: Research and Practice 23(7), 494–516
(2011)

7. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements
engineering: long-term product planning by roadmapping. In: 13th IEEE Inter-
national Conference on Requirements Engineering (RE’05). pp. 439–443. IEEE
(2005)

8. Maglyas, A., Nikula, U., Smolander, K.: What do we know about software product
management? - a systematic mapping study. In: 5th International Workshop on
Software Product Management (IWSPM’11). pp. 26–35. IEEE (2011)

9. de Moraes, M., de Almeida, E., Romero, S.: A systematic review on software
product lines scoping. In: 6th Experimental Software Engineering Latin Ameri-
can Workshop (ESELAW’09). pp. 63–72 (2009)

10. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer-Verlag New York Inc, Secaucus, NJ
(2005)

11. Ruhe, G.: Product Release Planning: Methods, Tools and Applications. CRC Press,
Boca Raton (2010)

12. Suomalainen, T., Salo, O., Abrahamsson, P., Similä, J.: Software product roadmap-
ping in a volatile business environment. Journal of Systems and Software 84(6),
958–975 (2011)

13. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.:
A systematic review on strategic release planning models. Journal of Information
and Software Technology 52(3), 237–248 (2010)

191

REFSQ 2012 Workshop Proceedings

The Influence of Internationalization on
Software Product Management

Vincent Blijleven, Farhad Andalibi, Albert Pap, and Sjaak Brinkkemper

Department of Information and Computing Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, The Netherlands

{v.b.blijleven,f.andalibi,a.p.pap,s.brinkkemper}@uu.nl

Abstract. The role of software product management within firms spe-
cialized in product software is of strategic importance, albeit complex to
execute. When looking at the role of product management in an inter-
national context then, the aforementioned level of complexity tends only
to increase. In this paper we present the results of two case studies con-
ducted with software firms that already successfully entered and estab-
lished themselves in international markets, addressing experienced chal-
lenges, issues, and notable differences between conducting product man-
agement activities in domestic and international markets. An overview
of recommendations based on this research can support other software
firms willing to make the step towards internationalization. If product
managers take these recommendations into account, better informed de-
cisions could be made and potential pitfalls avoided, leading to higher
rates of success and progress when entering international markets.

Keywords: Internationalization, Software Product Management, Soft-
ware Business, Requirements Management, Release Planning, Product
Planning, Portfolio Management

1 Introduction

Internationalization is often seen as a logical next step in the life cycle of a
software firm [10]. Plenty of opportunities arise as economic and political bar-
riers fall, as global trade is more and more accepted and modern technology
makes it possible to get within reach of a larger customer base. Although much
research has already been conducted on the subject of internationalization fo-
cused primarily on internationalization strategies and opportunities [4,6,11,13],
little research has been conducted on the influence of internationalization on soft-
ware product management activities. We regard software product management
as “the discipline and business process governing a product from its inception
to the market or customer delivery and service in order to generate the largest
possible value to a business” [7]. Various activities of software product manage-
ment include for instance requirements management, release planning, product
planning and portfolio management.

For firms specialized in product software, the role of product manager is of
strategic importance, albeit complex to execute [17]. As solely offering a core

192

International Workshop on Software Product Management (IWSPM)

product or service in the software industry is often regarded as insufficient, com-
plementary products and services are required to fulfill the needs of customers
[12]. A software product manager is able to identify these specific needs, and
can provide relevant information to internal and external stakeholders to address
these needs. When looking at the role of product manager in an international
context then, the aforementioned level of complexity tends only to increase, for
instance due to foreign customer habits [2], lack of legitimacy and influence
[9], and a lack of marketing capabilities [1]. Managing the activities of software
product management in an international environment in a successful way is thus
difficult but crucial in order to sustain, thrive and survive in international mar-
kets. A comparison is made of how product management activities are conducted
in the domestic market compared to international markets. Based on this com-
parison, an overview is created containing challenges and issues as experienced
by software product managers of firms that successfully established themselves
on international markets. This overview can serve as a practical guide for other
software firms willing to make this step in order to make better informed deci-
sions and avoid potential pitfalls. The main research question of this paper is
therefore as follows; “What influence does internationalization have on software
product management activities and deliverables?”

The remainder of this paper continues with a description of the research
method in section two, in which we will elaborate on the research methods we
employed concerning the case studies and expert reviews. In section three, we
discuss the initially identified factors that could be subject to the influence in-
ternationalization has on software product management. In section four, we give
a short introduction of each firm that participated in the case studies, includ-
ing the results of these case studies. An analysis of these results presented in
section four will be discussed in section five, including tables summarizing the
differences when conducting business internationally, the experienced challenges,
issues and valuable lessons learned by product managers, and the contribution of
this research to software firms willing to make the step toward international mar-
kets. In section six, we will discuss encountered validity threats to this research
and make statements about generalization possibilities of the results. In addi-
tion, we also draw the most important conclusions of this research and provide
suggestions for additional research.

2 Research Method

To be able to answer the research question, we made use of two case studies
conducted at Dutch product software firms that successfully entered, penetrated
and established themselves in international markets. We chose for a multiple case
study design in order to get different, unique perspectives on the experienced
challenges and issues by software product managers operating in an international
context [18]. Because of the exploratory nature of this research, we opted for a
structure that is in many ways similar to a recommended case study reporting
structure as described by Runeson & Höst [14].

193

REFSQ 2012 Workshop Proceedings

2.1 Case Study Selection Criteria and Validity

The data collection process took place by means of case studies conducted with
three software product managers of two medium-to-large commercial product
software firms. Two product managers stationed in the domestic market were
interviewed, as well as one product manager stationed overseas. The main prereq-
uisite when looking for a potential case study candidate, was that the candidate
organization already successfully entered and established itself on an interna-
tional market, thus having the experience available to provide constructive and
meaningful information regarding the experienced challenges, issues and notable
differences in the way product management activities are conducted domestically
versus internationally.

It should be noted that due to the exploratory nature of this research, the
qualitative semi-structured nature of the interviews and the small amount of
case studies conducted, generalizability of the results is limited [18]. In addition,
unique organizational characteristics of the companies studied such as different
organizational structures, different international markets in which the compa-
nies operate, and different product-specific characteristics directly influence the
generalizability of statements.

2.2 Data Collection and Evaluation of Results

First, an interview protocol was created based on the software product manage-
ment competence model by Bekkers et al. to serve as a guideline during the case
studies, resulting in semi-structured interviews lasting around one hour each [3].
This means the questions were planned and ordered, but not necessarily asked in
the exact same order as listed [14]. This protocol was evaluated by means of an
expert review with a practitioner specialized in product management in SMEs.
Second, three interviews were then conducted with software product managers in
order to gather relevant qualitative data on factors of influence concerning inter-
nationalization. This lead to the creation of an overview based on the gathered
information from these interviews. The interviews were recorded and notes were
made during the interviews. Third, the resulting overview based on the qualita-
tive data gathered from the three case study interviews was then evaluated by
means of an expert review with an academic specialized in internationalization.
We consider the opinion of an academic adequate for assessing real-world situa-
tions, as such an evaluation is not biased or lacking judgment from the industry.
After this expert review took place, the overview was made definitive.

3 Software Product Management Competence Model

The software product management competence model by Bekkers et al. was the
main source of information upon which the semi-interview protocol is based [3].
In this competence model, four main business functions are defined. Within this
research domain, a business function can be described as an amount of closely re-
lated processes or operations that are performed by a software product manager

194

International Workshop on Software Product Management (IWSPM)

(in a routinized way), in order to obtain a defined set of results, contributing
to carrying out a part of the mission of an organization. Four different business
functions are described within the competence model, these being: requirements
management, release planning, product planning, and portfolio management.
Each of the mentioned business functions consist of different focus areas, repre-
senting a coherent group of capabilities within a business function. With capa-
bilities we refer to important software product management practices.

The business function of requirements management concerns the ongoing
management of requirements outside of releases and consists of three focus ar-
eas: requirements gathering, requirements identification, and requirements orga-
nizing. Release planning then comprises software product management practices
required to successfully create and launch a new release, and consists of six focus
areas: requirements prioritization, scope change management, release definition,
release definition validation, build validation and launch preparation. The prod-
uct planning business function refers to the collecting of relevant information for
the creation of a roadmap for products, product lines or core assets and consists
of three focus areas: roadmap intelligence, product roadmapping and core asset
roadmapping. Last but not least, the business function of portfolio management
concerns the gathering of strategic information and decision making about the
entire product portfolio of an organization, and is made up out of three focus
areas: market analysis, product lifecycle management and partnering & con-
tracting. Each focus area in the competence model was taken into account when
creating the interview protocol, to make sure any software product management
related activity according to the competence model, was covered.

4 Case Studies

Three semi-structured interviews were conducted with three software product
managers. The interview began with first asking the product manager relevant
introductory questions about the organization they work for, followed by ques-
tions based on the business functions and relevant focus areas as defined in the
software product management competence model by Bekkers et al. [3].

The case study companies were renamed to Alpha and Beta because of
anonymity requests. In addition, two product managers (one working in the
Netherlands and one working in the United States) working for Alpha have been
separately interviewed. A quick overview of statistical data of the companies
studied can be seen in table 1. Subtitles in this section printed in bold refer
to the four different business functions from the software product management
competence model by Bekkers et al. Words in italics are the software product
management focus areas.

4.1 Case Study: Alpha

Requirements Management When looking at the business function of re-
quirements management at Alpha, no difference between markets was found

195

REFSQ 2012 Workshop Proceedings

Table 1. Overview of the case study participants

Statistic Alpha Beta

Employees 120 1,800

Location
of Headquarters

The Netherlands The Netherlands

Products Web content management sys-
tems, customer-driven online en-
gagement solutions

(Financial) ERP systems, includ-
ing HRM, CRM and project man-
agement solutions

Countries
active in

The Netherlands, United States The Netherlands and 40 other
countries

concerning requirements gathering. Direct contact with customers, visiting fairs,
being present at expositions, and the usage of an international ticket system
where customers can report requests are regarded as the main sources of input
when gathering requirements. Automated tools are employed to both identify
and organize requirements, with no direct difference between the domestic and
international market. The requirements are centrally organized and can thus
be easily placed on the product backlog. This product backlog is part of the
employed agile Scrum development philosophy.

Release Planning Every market exerts equal influence when prioritizing re-
quirements, and a standardized prioritizing methodology is employed. When
preparing a release definition, no representatives of international markets are
present. When validating a release definition as the next step, either internal
testing (by Alpha itself) is performed or launching customers are used, although
this is done solely in the domestic market. Scope change management is centrally
organized, as the overall corporate vision of the organization is largely responsi-
ble for the way in which the product is heading. When scope changes take place,
every internal and external stakeholder is informed of scope changes. When val-
idating a release build, no use of pilots is made. The product platform is built in
such a way that every customer is on its own specific version of the software, thus
updating is more or less standardized, can take place whenever the customer de-
sires, and is expected to go flawless. When preparing for a launch, information
about an upcoming release is communicated to all internal and external stake-
holders. Webinars are frequently used to share this information for each market
at the same time, although webinars are scheduled to be held separately for each
market due to e.g. different time-zones and languages.

Product Planning As aforementioned, the corporate vision serves as the main
source of input when creating a (short-term) product roadmap. Next to this,
direct input is also acquired from all customers, and preferences of customers
are measured in various ways, e.g. during specially organized customer event days

196

International Workshop on Software Product Management (IWSPM)

where customers can give their opinion on the roadmaps presented during these
events. Since a release cycle of three months is used for each product, employees
usually think three months in advance. No differences were found with regard
to the way roadmap intelligence is gathered in international markets, as every
product is reviewed in a standardized manner (and in English, thus accessible
for every internal stakeholder throughout the organization). Every market is
considered equal in terms of influence on roadmaps.

Portfolio Management Analyst sources such as Gartner or Forrester are con-
sidered to be of significant value when performing market analyses. This is con-
sidered especially important in markets such as the United States where the
labor market is characterized by loose policies. Employees of relevant compa-
nies often consult the aforementioned analysts, in order to be able to clarify the
decision they made for a chosen product. Being present in the lists of these ana-
lysts is therefore regarded to be of significant importance. Competitor analyses
are conducted in a decentralized way, meaning in every market in which the
company is active, and later combined to get a general, international overview.
Win-loss analyses are also conducted in every market, and are considered to be a
source of valuable knowledge. Knowing why (potential) customers decide to buy
or not buy a product directly influences product strategies. Customer preferences
of the different markets in which the organization operates and the underlying
platform architectures of its products exert influence over the life cycles of the
products. Ultimately however, it is centrally determined, referring to the influence
of the corporate vision. Major changes in products are also centrally managed,
although external parties are usually involved as they generally possess relevant
knowledge. The proposed changes are then reviewed, discussed, written down
and centrally stored, accessible for all relevant internal stakeholders.

The introduction of separate product lines is seen as unfavorable, as the cur-
rent platform architecture is considered to be highly flexible. Introducing new
product lines then is considered to create only more overhead. Different versions
of software, specifically oriented at for instance the public and private sector are
on offer, but are built on the same platform. Regarding partnering and contract-
ing, service level agreements (SLAs) are in place taking the differing time zones
into account. Support is offered from the domestic market, but various working
shifts are employed to be able to provide support throughout the different time
zones. External support centers in different time zones are considered due to the
increase in the amount of customers. In addition, support preferences are con-
sidered to be relatively homogeneous, except for differences concerning national
legislation. This is especially the case when targeting governmental organiza-
tions that are bound by different rules, requiring the possession of specialized
knowledge by support personnel.

4.2 Case Study: Beta

Requirements Management When looking at the business function of re-
quirements management, no difference was found between markets with regard

197

REFSQ 2012 Workshop Proceedings

to the way in which requirements gathering takes place from customers. However,
the central marketing department plays a pivotal role concerning requirements
gathering by performing market research in different countries and the creation
of business cases. Interesting market trends are translated to business needs,
followed by the creation of conceptual scenarios. Business needs resulting from
market research, business cases and customer requirements are then merged to
create functional solution. A network of customers and partners is extensively
involved from the inception of a solution to its controlled release, which is sup-
ported by working in two-week Scrum sprint cycles. Automated tools are used
when identifying requirements (e.g. to link requirements with similar functional-
ity together), and incoming requirements as provided by customers are organized
by storing these in a central repository and get updated when necessary.

Release Planning Markets have different weights with regard to the prioriti-
zation of requirements. This is primarily due to different localizations in which
legal aspects have absolute priority, as customers have obligations imposed by
governments with respect to e.g. financial reporting. Since a limited amount of
development capacity is available, the allocation of developers to address legal
requirements has priority. This allocation is largely based on a localization ma-
trix, consisting of five capability tiers of compliance with legislation of all the
countries in which the company operates. Apart from legal aspects, the size of the
customer base of a specific localization and the results of conducted cost-benefit
analyses are also taken into account when prioritizing requirements.

Input is gathered from all markets when preparing a release definition. Every
market has an equal amount of influence, and the organization is structured in
such a way that every country is involved during this process. The corporate
vision as outlined by the board, however, serves as the main guideline. When
validating a release definition then, business cases are created for each market.
This is of significant importance due to differences in national legislation. Exter-
nal parties are involved during the validation of the release definition, which is
termed a controlled release. Intensive use is made of controlled releases (pilots)
when validating a build. Launch impact analyses are also conducted for each
market to analyse whether the release and deployment of a new build will go
without problems. When the controlled releases then went without problems,
the build will be released for all markets at the same time.

Differences can be seen when looking at the launch preparation for a new
build, specifically with regard to timing and internal reporting. The organization
strives to make all information as abstract as possible, to which each market can
add its own local flavor. Examples are differences in timing (when reporting to
external stakeholders) and deciding what information is relevant or irrelevant
for a given market. All internal stakeholders are informed about information
concerning a new launch at the same time.

Last but not least, scope changes to the corporate product line are centrally
managed, and impact analyses are performed for each relevant country to mea-
sure the effects of possible scope changes.

198

International Workshop on Software Product Management (IWSPM)

Product Planning Roadmap intelligence is gathered through consultation
with all relevant internal stakeholders to analyse what markets are of poten-
tial interest to be entered. Overviews showing current and expected upcoming
trends within the industry are also created. Overviews showing the big picture
of important developments in terms of technology are considered to be of sec-
ondary importance to overviews showing important market trends, since it is
found that technology is complementary to market demands.

The products on offer have three releases each year, but this amount is not
fixed in case there is a good reason to deviate from the scheduled releases. Prod-
uct roadmaps are in place showing the (short-term) vision for each product, and
is primarily centrally coordinated. What is interesting to note, is that product
management seen from an organizational structure perspective, is as centralized
as possible, whereas marketing is as decentralized as possible. The motivation
behind this is to allow the decentralized marketing departments to add their own
aforementioned local flavor to the products, which is considered to contribute to
becoming a local player as much as possible. Being a local player as an interna-
tional organization within another market is regarded as the highest achievable
status, since no distinguishes can then be made between the organization itself
and their local competitors. Local competitors are considered to have a natural
advantage due to for instance being able to apply their knowledge of their own
market and know the mindsets of customers [5].

All core assets of the organization are registered and centrally stored. Make-
or-buy analyses are constantly performed, to decide whether a given process
can be outsourced or should be performed with the available internal resources.
Roadmaps are present showing how the core assets are continuously sustained,
upgraded and enhanced.

Portfolio Management Market analyses are conducted by both internal and
external parties, and each market is intensively monitored. Every market has
its own marketing strategy, in order to most optimally approach (potential)
customers from the respective markets. Competitor analyses performed in each
market indicate what actions need to be undertaken in order to become a local
player as much as possible. In addition, information resulting from the monitor-
ing of customer preferences in each market is regarded as the backbone of the
corporate strategy, as this greatly influences the direction in which the organiza-
tion is heading. A win-loss analysis is also performed for each large customer, in
order to analyze why a (potential) customer did or did not purchase a product
and to discover the motivations behind the choices made that lead to the specific
outcome. It is considered valuable to know what customers or prospects think
with regard to for instance the price of a product, the relationship intimacy with
the organization, the reputation, or functionalities offered.

The lifecycle of each product on offer is managed on a central level. Changes
in the product are managed in a decentralized manner however. This is primarily
due to local differences in legislation. In this case, input is sent from decentral-
ized units to the central organization, after which all the input from the different

199

REFSQ 2012 Workshop Proceedings

markets is combined, resulting in an official determination of the product lifecy-
cle. Multiple product lines are maintained for different market types, primarily
to optimally address local customer preferences and in order to allow for flexible
adaptation to altered national legislation.

When looking at partnering & contracting, service level agreements are in
place and are considered to be relatively homogeneous among markets, although
with some minor differing details. Support to customers is centrally organized,
and support needs are also found to be relatively homogeneous among markets.
Due to the differences in legislation in each separate market however, support is
kept up-to-date to be able to optimally serve each market. This is regarded as
one of the core competences of the organization, contributing to the realization
of the preferred image of being a local player.

5 Analysis

We presented the case study results for each business function and their belong-
ing focus areas. In this section, we will go in-depth about the interesting findings
per business function, in order to keep the closely related processes (focus areas)
together. Tables 2, 3, 4 & 5 present differences in the way product management
activities are conducted domestically versus internationally for each aforemen-
tioned business function in order to get a better overview.

5.1 Requirements Management

In the results it becomes apparent that little difference exists between conducting
requirements management activities in the domestic market and international
markets (see table 2). The methods employed by both organizations to gather,
identify and organize requirements are largely the same, except for Beta giving
significant responsibility to the central marketing department. The given reason
for this, is the usage of a market-driven solution development framework. This
involves close monitoring of markets in order to identify new market trends and
customer preferences, leading to product requirements.

In addition, both Alpha and Beta apply the Scrum development philosophy
when performing activities related to the organization of requirements. As con-
ducting business on an international scale tends to increase the complexity of
communication and cooperation, the Scrum philosophy is able to e.g. support
stakeholders involved (including customers) by focussing on shortening feedback
cycles between these stakeholders, reducing time between customer requests and
implementations, all of this order to reduce the overall complexity of interaction
between relevant stakeholders at different locations [16].

5.2 Release Planning

Both organizations prioritize requirements in a different way. At Alpha, each
market has an equal amount of influence in terms of speaking volume. Beta

200

International Workshop on Software Product Management (IWSPM)

Table 2. Overview of differences concerning requirements management activities

Requirements
Management

Influences of Internationalization

Requirements
Gathering

No differences, although central marketing department plays a piv-
otal role depending on the differing geographical locations and
time-zones, cultural preferences, languages, and size of the cus-
tomer base of localizations.

Requirements
Identification

Usage of automated tools for all markets to bridge geographical
distances.

Requirements
Organizing

Centrally stored, accessible to relevant internal stakeholders.

however takes various factors into account when deciding how much influence
each market has. Requirements concerning legislation for each localization have
absolute priority when prioritizing requirements. Being able to react rapidly to
changes in legislation affecting financial processes is regarded as one of the core
competences of the organization. In addition, the influence the different markets
have is also based on the size of the customer base of each localization, meaning
localizations with more customers are prioritized over those with less customers.

The corporate vision of both organizations is the most influential source when
preparing a release definition. The organizational structure of Beta however is
designed in such a way that every market is able to voice its opinion when gath-
ering input. This is performed because of aforementioned differences in national
legislation among markets. As a consequence, validation of releases take place
in all markets in which Beta is active. Alpha validates its release definition only
in its domestic market, since not much product-related differences can be seen
between the markets, hence causing only more (e.g. communicative) overhead if
testing would take place in other markets.

Both organizations centrally manage scope changes as the corporate vision
is the primary driving force behind these changes. Another difference can be
seen when looking at the way in which build validation is conducted. Since the
updating process at Alpha is standardized, no use of controlled releases is made
to validate the build. Beta however makes intensive use controlled releases as well
as external parties, since each localization has its own version of the software
and thus requires to be separately tested.

Alpha and Beta both employ different approaches to address different mar-
kets when preparing for launches. Alpha makes use of separate webinars for each
market due to different time-zones and languages. Beta relies on decentraliza-
tion in international marketing, meaning international operations are delegated
to separate markets [8]. Product management is located as central as possible,
whereas marketing is decentralized as much as possible. Information sent to in-
ternational markets is made as abstract as possible by the central marketing
department based upon input from product management, after which local fla-
vors can be added by the decentralized marketing departments. This allows the

201

REFSQ 2012 Workshop Proceedings

organization to position itself as a local player in international markets with
all its benefits, such as a higher level of awareness leading to increased brand
reputation, trust and the development of close relationships with customers [15].

Table 3. Overview of differences concerning release planning activities

Release
Planning

Influences of Internationalization

Requirements
Prioritization

Influence of each market depends on the size of the customer base
of a localization, financial aspects such as revenue, and critical
market-specific requirements such as legal aspects.

Release
Definition
Preparation

Centrally coordinated based on corporate vision, although input is
generally gathered from all markets.

Release
Definition
Validation

Validation is only performed in the domestic market, except for
when critical market-specific influences on the product demands
for separate validation.

Scope Change
Management

Centrally managed due to the influence of the corporate vision.

Build Validation Depending on the nature of the product, business model, and de-
livery model.

Launch
Preparation

Product management is as centralized as possible, whereas market-
ing is as decentralized as possible to add local flavors. This depends
on geographical locations and time-zones, cultural preferences, lan-
guages, and size of the customer base of localizations.

5.3 Product Planning

Both organizations consult each market when gathering roadmap intelligence.
Alpha standardized the way in which products are reviewed per market and
the results are accessible to every internal stakeholder in English, thus reducing
communicative barriers. Beta combines intelligence received from each market
in order to get a bigger picture of global societal and technological trends. When
creating a product roadmap however, both organizations use the corporate vision
as their main source of input. The creation of product roadmaps at Alpha is done
entirely by the central headquarters itself, whereas Beta consults the decentral-
ized marketing departments for information and feedback. Both organizations
centrally store and register their core assets.

5.4 Portfolio Management

Both organizations gather information from each market when performing mar-
ket analyses. Alpha however places additional emphasis on analyst reports such
as reports from Gartner or Forrester. This is considered especially important in
markets such as the United States where its labor market is characterized by

202

International Workshop on Software Product Management (IWSPM)

Table 4. Overview of differences concerning product planning activities

Product
Planning

Influences of Internationalization

Roadmap
Intelligence

Every product is reviewed in a standardized manner, accessible for
every internal stakeholder. Input from each market is then com-
bined to get a bigger picture of societal and technological trends.

Product
Roadmapping

Corporate vision is the main source of input and is thus centrally
organized, although decentralized marketing departments also pro-
vide valuable input.

Core Asset
Roadmapping

Centrally stored, accessible to relevant internal stakeholders.

loose policies, making it relatively easy for employers to fire personnel. Employ-
ees of relevant companies often consult the aforementioned analysts, in order to
be able to clarify the decision they made for a chosen product. Beta performs
market analyses in each market by making use of the decentralized marketing
departments. Competitor analyses are also performed in each market to identify
opportunities and threats.

The corporate vision is again the main factor of influence when looking at the
management of product lifecycles performed by each company. However, Alpha
takes input from each market into account to make sure planned changes to
products do not negatively affect markets other than its domestic market. Beta
also actively communicates with other markets about planned changes, to ensure
no problems arise due to differences in national legislation.

When looking at partnering & contracting, both Alpha and Beta regard sup-
port preferences and their service level agreements to be relatively homogeneous
among markets. Beta experiences minor differences in support questions because
of differences in legislation among markets, but this is not regarded as a problem.

Table 5. Overview of differences concerning portfolio management activities

Portfolio
Management

Influences of Internationalization

Market Analysis Analysts are of significant influence when performing market anal-
yses. Every market has its own marketing strategy, and competitor
analyses are performed in each market.

Product
Lifecycle
Management

Centrally organized due to the influence of the corporate vision.
Reports from each market are taken into account, and changes
in the product are managed in a decentralized way depending on
market-specific circumstances.

Partnering
& Contracting

SLAs and support preferences are considered relatively homoge-
neous among markets.

203

REFSQ 2012 Workshop Proceedings

5.5 Lessons Learned

At the end of the interviews, the case study participants were asked whether they
had learned valuable lessons they would like to share. The case study participants
indicated no cookie-cutter approaches exist when it comes to performing
product management activities in international markets. There are no real ’one-
size fits all’ solutions since for instance every new request, issue, or activity
demands another approach. The complexity of product management in foreign
markets should thus not be underestimated.

Another lesson learned, was that organizations should decline customer
requests that negatively affect the organization in the long run. An ex-
ample given was declining requests that involve tailor-made software for different
localizations. Beta experienced that delivering tailor-made software seemed like
a lucrative deal at first sight, but became a real burden as several years passed.
As the tailor-made software slowly became legacy software and Beta itself as
an organization evolved over time, nobody eventually knew who was responsible
for the development of what part of the tailor-made software. This resulted in
problems concerning support that lead to time-consuming processes and unnec-
essary costs. Beta now considers the acceptance of tailor-made software proposals
as misplaced customer-driven behavior. Organizations should therefore always
think of long-term consequences when considering a customer request.

Attempting to overcome cultural differences in other markets is regarded as
another underrated problem. Alpha indicated that the organization consistently
had the feeling it was in a less favorable position compared to local competi-
tors, due to societal factors such as chauvinism. Becoming a fully integrated
local player is considered to be near impossible. This creates the need for dif-
ferentiation and the propagation of unique selling points compared to
products offered by competitors.

Alpha also mentioned the problem of experiencing communicative barriers.
Due to operating in different time-zones and the relatively long geographical
distance between offices, employees working in the United States indicated that
they experience problems with being kept up to date. No longer is interesting
information for instance exchanged with fellow colleagues during short conver-
sations while standing next to a coffee machine. This implies the need for
well-defined and structured communication channels.

6 Discussion & Conclusion

We addressed the influence internationalization has on software product man-
agement activities and deliverables. This was done by means of conducting case
studies at internationally operating product software companies in the form of
semi-structured interviews. This semi-structured nature was the result of using
an interview protocol based on both a literature study and an expert evaluation.
We found that internationalization influences all business functions described in
the software product management competence model by Bekkers et al [3].

204

International Workshop on Software Product Management (IWSPM)

When looking at the business function of requirements management, we
found that decentralized marketing departments play a pivotal role in gathering
requirements to most optimally address customers. In addition, requirements
are centrally stored and accessible to all relevant internal stakeholders to bridge
geographical distances and time-zones. The size of a customer base of a local-
ization, revenue, and critical market-specific requirements such as legal aspects
are of significant influence when looking at the business function of release plan-
ning. This is especially the case when prioritizing requirements. The preparation
and validation of release definitions, management of scope changes and launch
preparation is performed as centralized as possible, except when foreign market-
specific issues are involved, for instance legal aspects. The costs and effort of
performing these activities abroad was found to outweigh the benefits it could
offer. The corporate vision defined by the executive board was found to be strong
factor of influence when looking at the business functions of product planning
and portfolio management. It is the main source of influence concerning product
roadmapping and product lifecycle management. In order to get a bigger pic-
ture of global market demands and societal and technological changes however,
relevant stakeholders in foreign markets are also consulted. SLAs and support
preferences are considered to be relatively homogeneous among markets.

Among lessons learned by the interviewed product managers were that no
cookie-cutter approaches exist when it comes to performing product management
activities in international markets, and that customer requests that negatively
affect the organization in the long run should be declined. The need was also
felt to differentiate and propagate unique selling points in international mar-
kets, in order to compensate for disadvantages international newcomers have
compared to already established local players. They also mentioned the need for
well-defined and structured communication channels to overcome geographical
distances between offices that impose communicative barriers.

It has to be noted that generalizability of the presented findings is limited
due to the small amount of case studies conducted. Unique organizational char-
acteristics of the companies studied such as different organizational structures,
different international markets in which the companies operate, and different
product-specific characteristics also directly influence the generalizability of the
findings. Next to this, the organizations studied offer different types of products
and services (e.g. a web content management system versus an organization-wide
ERP system). This does not make both organizations directly comparable when
comparing how specific activities are performed within an international context.

Future research should be directed at gathering a larger and more represen-
tative dataset, for instance by conducting a structured survey in the product
software industry. Conducting additional case studies will continue to provide
useful data, although a larger dataset is preferred in order to make plausible
statements when comparing organizations. A larger dataset will also allow for
the division of companies in categories, making it possible to make statements
about findings between different product type companies. Additional research
should also aim to include survey participants that have their headquarters lo-

205

REFSQ 2012 Workshop Proceedings

cated in different countries, to study the specific effects of political-geographical
influences on conducting business from another perspective. Last but not least,
future research can also orient itself toward researching specific parts of inter-
nationalization, such as whether the usage of external partners in international
markets positively influences the internationalization trajectory.

References

1. Alajoutsijarvi, K.: Customer relationships and the small software firm a framework
for understanding challenges faced in marketing. Information &Management 37(3),
153–159 (2000)

2. Arenius, P.: The psychic distance postulate revised: From market selection to speed
of market penetration. Journal of International Entrepreneurship 3, 115–131 (2005)

3. Bekkers, W., Weerd, I.v.d., Spruit, M., Brinkkemper, S.: A framework for pro-
cess improvement in software product management. In: Proceedings of the 17th
European Conference on Systems, Software and Services Process Improvement
(EUROSPI), Grenoble, France, 1-12. (2010)

4. Bell, J.: The internationalization of small computer software firms: A further chal-
lenge to ”stage” theories. European Journal of Marketing 29(8), 60–75 (1995)

5. Bhattacharya, A., Michael, D.: How local companies keep multinationals at bay.
Harvard Business Review 86(3), 84–95 (2008)

6. Coviello, N., Munro, H.: Network relationships and the internationalisation process
of small software firms. International Business Review 6(4), 361–386 (1997)

7. Ebert, C.: Software product management. CrossTalk 22(1), 15–19 (2009)
8. Jobber, D.: Principles and practice of marketing. McGraw-Hill (1995)
9. Leonidou, L.C.: An analysis of the barriers hindering small business export devel-

opment. Journal of Small Business Management 42(3), 279–302 (2004)
10. McHugh, P.: Making it Big in Software - A guide to success for software vendors

with growth ambitions. Rubic Publishing, England (1999)
11. Moen, O., Gavlen, M., Endresen, I.: Internationalization of small, computer soft-

ware firms: Entry forms and market selection. European Journal of Marketing
32(9/10), 1236–1251 (2004)

12. Moore, G.: Crossing the Chasm: Marketing and Selling High-Tech Products to
Mainstream Customers. HarperBusiness (1991)

13. Reuwer, T., Jansen, S., Brinkkemper, S., (n.d.): Key factors in the internation-
alization process of smes exporting business software as a service. International
Journal of Business Information Systems (forthcoming)

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14, 131–164 (April 2009)

15. Schuiling, I., Kapferer, J.N.: Executive insights: Real differences between local and
international brands: Strategic implications for international marketers. Journal of
International Marketing 12(4), 97–112 (2004)

16. Schwaber, K.: Agile Project Management with Scrum. Prentice Hall (2004)
17. Weerd, I.v.d., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: To-

wards a reference framework for software product management. In: Proceedings of
the 14th International Requirements Engineering Conference. pp. 319–322. Min-
neapolis/St. Paul, Minnesota, USA (2006)

18. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Inc
(2008)

206

International Workshop on Software Product Management (IWSPM)

Managing the Product Release Cycle
Ten factors determining success in project management of product

release cycles

Suzanne Gietema and Sjaak Brinkkemper

Department of Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands

s.l.e.gietema@uu.nl, s.brinkkemper@uu.nl

Abstract. This paper discusses ten success factors of project management in
the product release cycle. Unlike general project management in release man-
agement the cycle of the same project is repeated, releasing a new version of a
product with every new release. A literature study and case studies executed at
several companies have shown that success factors to managing development of
product releases can be divided into two domains: management of the release
and contents of the release. The ten success factors that were found are: strict
planning, clear communication, interim checks, full documentation, realistic
customer expectations, feasible and understandable requirements, downsize
functionality, performing an impact analysis, managing product interdependen-
cies, and strictly separating releases. Some of these success factors are also key
to general project management while others are more specific to managing the
development of product releases.

Keywords: Product, release, management, success, factors, cycle

1 Introduction

Each project needs to be managed to make it a success. Project management can be defined
as: the scheduling, monitoring and control of a project and the motivation of everyone involved
to reach the project goals within the set time and to the specified cost, quality and performance
[1]. Project management does not necessarily mean the management of one project cycle,
meaning when a project runs from start to finish and then never is revisited. Many IT-projects
involve software products that are subdue to many release cycles. Products of which a newer
updated version of the product is released over a period of time. Some of these release cycles
are constant, where a product update is released e.g. every three months. Other release cycles
are slightly more sporadic, where one update may be released three months after the previous
one and another update may take six months or even longer.

This research paper looks into the project management of the product release cycle. The ba-
sis for this research project is the research question: “What are success factors of project man-

207

REFSQ 2012 Workshop Proceedings

agement in the product release cycle?”. The authors of this paper view each product release
development as a project, from the initial development of a release to the actual release of the
new version of the product. The authors define the product release cycle as the continuous
development of new versions of a product. A product experiencing this, continuously moves
through the various stages of the development cycle. Key factors of successful project man-
agement of products involved in release cycles have been studied through a literature review
and case study research. Software product release management is defined by Jansen and
Brinkkemper [2] as “the storage, publication, identification and packaging of the elements of a
product”. Software product management and software project management are interrelated.
Manteli, Weerd and Brinkkemper [3] created a Software Management Conceptual Model
showing the interrelationship between Software Product Management and Software Product
Management, describing three independent variables of project management (time, quality, and
cost) in relation to three dependent variables of product management (market success, customer
satisfaction, and business goals), and also discussing the distinct roles of product manager and
project manager. Research has shown that product managers and project managers need to
understand each other’s roles to be able to communicate and collaborate efficiently [3]. Project
management success involves meeting project goals like time and financial objectives [4].
Product success involves the capability of the final product to meet the project owner’s busi-
ness objectives like customer satisfaction or the satisfaction of stakeholders needs if related to
the product [4]. Research has shown that project management success has a positive relation-
ship with product success [5]. This paper focuses on what project management factors make
product release development successful, it will not focus on the factors that make an actual
product successful.

2 Related literature

Research has shown that there are several key factors that make project management and pro-
duct development a success. These next sections discuss project management, product man-
agement and product releases.

2.1 Project management

A project can be defined as a temporary effort aimed at creating a unique product, service or
result. Project management is the use of knowledge, skills, tools and techniques in project ac-
tivities with the purpose to meet project requirements [1]. Project management entails applying
and integrating several project management processes. These processes are initiating, planning,
executing, monitoring and controlling, and closing. Part of these processes is the identification
of requirements, creating clear and achievable goals, creating a balance between quality, scope,
time and cost, and modifying the specifications, plans, and approach to the various concerns
and expectations of stakeholders [1].
Cooke-Davies [6] determined project success factors by answering three questions: “What
factors are critical to project management success?”, “What factors are critical to success on an
individual project?”, and “What factors lead to consistently successful projects?”. It was deter-
mined that several factors are key to in-time performance. These factors are: sufficient organi-
zation-wide instruction on the principles of risk management, process maturity for assigning

208

International Workshop on Software Product Management (IWSPM)

risk ownership, sufficient maintaining of a risk record, a current risk management plan, enough
documentation describing organizational responsibilities on the project, and project (stage)
length should be kept as far under three years as possible. Key success factors to the on-cost
performance of a project are: allow modifications to project scope only through a mature scope
modification management process, and retain the integrity of the performance measurement
baseline. Cooke-Davies [6] also points out the difference between project success and project
management success. Stating that the first is determined by the general project objectives, while
the latter is determined on the basis of cost, time, and quality. In this way success criteria for
projects and success factors for project management are distinguished from each other. It was
determined that a critical factor for project success is an effective benefits delivery and man-
agement process involving shared collaboration of project management and line management
functions. Atkinson [7] depicts the iron triangle including three interdependent key factors of
project management also mentioned by Cooke-Davies [6]: cost, quality and time. Meaning that
if one factor decreases or increases the other factors will be also decrease or increase. Other
research [8] identifies an additional factor to these three factors, being scope. In this research it
is defined that only three of the factors can be fixed, but one will always remain variable.
Clarke [9] poses that by focusing on key success factors, like communication and clear objec-
tive and scope, problems related to project management that distract from the main goals of a
project can be solved. It is stated that by applying the following key success factors to problems
in project management, projects will run better. Communication creates better understanding,
helps eliminate mistakes, may increase motivation, can help identify problems sooner, and
encourage team-work. As a result the project’s chance to meet its goals within the set time and
allocated resources increases. The objectives and scope of the project needs to be clear to create
general understanding, which will make it more likely that everything needed is included in the
project and nothing is being forgotten [9]. Instead of just working with large projects it is better
to break them down into “bite sized chunks” making the project easier to handle. This will
result in more ownership by those owning a part of the project, because responsibilities and
accountabilities are spread amongst more people. Project management is made easier in a num-
ber of ways because of this. By creating a better overview of a project part, which is easier to
review than an entire project. Also project plans should be considered to be dynamic, because it
is unlikely that a project will completely go to plan. Clarke [9] stresses that it is the interaction
amongst these success factors that is key to the success of a project not the factors by itself.
It is important to maintain project knowledge [10], especially within projects where knowledge
needs to be reused (e.g. for a new release). Important project experiences should be captured
immediately, with the whole project team, when achieving a significant milestone. Also indi-
vidual group member’s experiences should collectively and interactively be analyzed. These
insights should be used to increase understanding as to what actions hold what consequences.
The Standish Group [11] found that projects that are successful are completed on time and
within the set budget, including all the features that were initially specified in the project re-
quirements. They identified ten factors that attribute to project success. These factors are: exec-
utive support, user involvement, experienced project manager, clear organizational goals, min-
imized scope, standard software infrastructure, strong basic requirements, a formal methodolo-
gy, trustworthy estimates and other criteria (including good planning and capable staff).
Andersen et al. [12] broke down project success factors into parts of different project-stages.
This is depicted in Table 1.

209

REFSQ 2012 Workshop Proceedings

Table 1. Project success factors after Andersen et al. [12])

Project Stage Success factors

Foundation Align the project with the organization
Get commitment of involved managers
Create a shared vision

Planning Use numerous levels
Use simple friendly tools
Encourage creativity
Make realistic estimates

Implementation Negotiate resource availability
Cooperate
Define management responsibility
Get commitment of resource providers
Define channels of communication
Project manager should function as man-
ager not chief technologist

Control Integrate plans and progress reports
Formalize the review

� Clear intervals
� Clear criteria
� Controlled attendance

Use sources authority

2.2 Product Development

A product can be defined as anything tangible or intangible which can be bought. Business-
es make products in order to sell them to other businesses or consumers. A product by itself can
be resold to a consumer, or it may be sold as part of another product [13]. A product may be
part of a product line, which can be defined as several related products grouped together, focus-
ing on markets that are alike, or on solving a specific type of problem. Products that are part of
the same product line serve markets that are alike or can be created through a similar produc-
tion method. A product line can also be viewed as a small product portfolio. Product portfolios
hold groups of related product lines [13]. Fig. 1 depicts the Product Portfolio Structure.

Fig. 1. Product Portfolio Structure (based on: Haines [13])

210

International Workshop on Software Product Management (IWSPM)

Product management can be defined as organizational management of the product, product
line, or project portfolio level, which is handled by the product manager. A product manager is
often responsible for part of or the entire product platform, architecture, a module or set of
modules, a single product, a product line, or a product portfolio [13]. Therefore it is important
that a product manager focuses on the right success factors and knows what factors of failure
are in order to make project management of the product release cycle successful.
The product life cycle consists of several phases [13]. The product life cycle model shows what
stages a product goes through from the initial idea up to it being finally managed while in the
market. This model is important for product release, because with each new version a new
product life cycle is started. The product life cycle, which shows product portfolio work area
buckets like feasibility, development and growth, is depicted in Fig. 2. This is overlaid with a
cash flow diagram, illustrating that the introduction of a product does not start to pay off until a
significant amount of time has gone by.
The way a company handles product development can give it a great competitive advantage
[14]. Proper management of a product can greatly influence software product success [15].
Also the quality level of Software Product Management processes may also tremendously
influence software product success, due to quality improvements and the prevention of delaying
releases [16]. Weerd et al. [16] created a maturity matrix to help assess an organization’s Soft-
ware Product Management capabilities as well as providing incremental enhancements to the
product manager. Reducing new product development time can give a company a relative ad-
vantage in market share, profit and long-term competitiveness. In this process cost, perfor-
mance, schedule and quality should also be handled.

Fig. 2. Product Life Cycle model (Based on: Haines [13])

Research by Manteli, Weerd and Brinkkemper [3] has indicated that quality is key to mar-
ket success for a software product. It was also concluded that product managers judge the cost
variable for having the greatest influence on meeting business goals. Other research by Janssen

211

REFSQ 2012 Workshop Proceedings

and Brinkkemper [17] have also found that the maintenance of software vendor’s customer
relationships is essential to being successful and surviving within the current industry climate.

Where product development works with various continuous product releases there is an ex-
tra dimension added to the product development process. In the complex release process [18]
there is weight on the time-to-market with a strain on the amount of resources available [19].
Requirements associated with each release version have to be carefully planned and managed.
Also selecting which requirements to implement in a release is an important part of the release
process [20]. Organizations focusing on software development often have successive software
product releases, in this process release planning is key [21]. This planning, however, needs to
be flexible [22].

Jansen and Brinkkemper [17] identified ten misconceptions about product software releas-
ing. Examples of these misconceptions are that customers want and must stay up-to-date, re-
pairs can be put off until the next major release, workarounds need to be avoided at all costs,
the next release is always superior for the customer than the previous release, and that releasing
too often is not a good thing. Jansen [23] found four facts indicating that a software knowledge
base improves release processes. Management of product data improves the release of regular
products. Information collected during product development can be reused in later phases like
implementation. Also storing knowledge centrally leads to a reduction in delivery effort. Final-
ly being able to ask “what-if” questions to a local software knowledge base that is linked to
several component sources may increase the trustworthiness of the component deployment
process, assisting a system manager to better predict which adaptations can be made to a sys-
tem and what features can be provided with a change.

In the previous sections many factors for product success and project management success
have been identified. Due to the special circumstances surrounding product release additional
success factors may be expected for products involved in a release cycle, besides the regular
success factors associated with project management or product management.

3 Methodology

This research focusses upon finding success factors for project management of products subject
to release cycles. To build further upon the success factors identified in theory, the empirical
part of this research entailed the performance of case studies have been to identify product
release cycle management specific success factors. For this specific research topic the man-
agement of the product release cycle a multiple case study for theory building [24] used, to
create a theoretical basis for further research. These case studies were performed at a variety of
organizations with experience in release management, in the form of an interview.
In these interviews focus was put on how each case study company manages their release cycle.
Where major focus points lie in that release cycle and what each company views as important
factors for making project management of product release cycles a success. The interviews
were performed in a semi structured way, i.e. the interviewer took the lead in asking the rele-
vant questions, but provided room for the interviewees to show and tell what they considered
relevant. The interviews therefore were not extensively guided. The data gathered in the case
study interviews represents the insight given by the interviewee from his/her perspective.

212

International Workshop on Software Product Management (IWSPM)

4 Case study research

Each case study company has its own approach in dealing with product releases, however over
the course of the case studies it was noticed that there are some general success factors to prod-
uct release cycle management. Also it seems that the product release cycle, due to its more
unique circumstance of being a repeating project, has many additional success factors as op-
posed to a regular one time project. Table 2, provides general information about the case study
companies and the interviewees. These companies have been given fictitious names, represent-
ing the type of product/service they provide.

Table 2. General Company information

Company Interviewee
position

Year
founded

Product / Ser-
vice

Number of
Employees

Number
main of
Products

Duration
Release
Cycle

RealComp Director
software
development

2000 Real-estate
software

44 4 4-5
months

WorkComp Vice Presi-
dent Soft-
ware Deve-
lopment

1984 Software- and
Consultancy
services involv-
ing Integrated
Workplace
Management
solutions

320 6 4-5
months

ERPComp Project
manager

2009 Advice on
process im-
provement and
product devel-
opment

4 4 9 months

FinComp Requirements
manager

1927 Finances 107000 2 4-5
months

4.1 RealComp

RealComp is a small firm that specializes in real-estate software. According to RealComp
key to the product release process is especially managing the start of the process. This is where
the process basics are determined. Requirements management is important, often the list of
product requirements is too long to be realized when also coping with time and budget. A selec-
tion has to made, so the most important requirements remain. Also a time estimate has to be
made when determining scope, where the high level estimate versus the actual available capaci-
ty. According to RealComp the estimate is often off by a factor two or more. It is important to
have a finished conceptual design before the start of the iteration, to have everything clear and
prevent problems due to incomplete information. There is a constant (so called) game going on
between scope, budget, and timing, with the dilemma of where cuts should be made, weighing
between increasing the budget, taking functionality away from the scope, and increasing the
time span on the development.

213

REFSQ 2012 Workshop Proceedings

New releases may influence any previous releases as well as other products related to the
product of which a new version is released. Therefore differences on where products are in
their respective life cycles may influence the product release cycles of products releases cur-
rently being developed. The effect a new release has on related products as well as previous
releases needs to be taken into account. It should be made clear to the customer what will be
developed far in advance of the actual release (at least six months), however make sure to pro-
vide a disclaimer that this could be subdue to change. Conceptual documents should always be
completed before the actual product development starts, this will speed up the release develop-
ment. Problems are often caused by last minute changes, due to a lack of design, because prod-
uct development continuous due to time pressures. Commitments that are made have to be
managed, meaning that customer expectations need to be managed. Also the points where busi-
ness meets technology needs to be managed, meaning can what the business wants be realized
within the timespan set with the resources available. A delay on one release may result in paral-
lel tracks with the next release and result in additional work. Instead of delaying a project it
might be better to leave out some of the functionality. To overcome this problem time boxing
may be used, where some functionalities only make it in if timing allows it.

4.2 WorkComp

WorkComp is a small software company that has two to three releases per year. They de-
fine product development as an interdependency of three variables: quality, scope and time (a),
using three of the four, in literature, mentioned variables influencing development and a varia-
tion of the iron triangle.

According to WorkComp it is important that you don not fixate all three of these variables,
because that would leave little room for error. In WorkComp’s case quality needs to be suffi-
cient, time is fixed and scope is flexible. Meaning that when a deadline cannot be made some of
the functionality might be taken out in order to make the deadline. Depending on the type of
functionality it may be put in the next release instead of the current release, if this does not
cause too much strain on the next release. WorkComp offers full support for two years on any
old release, however they try the phase out old releases as quickly as possible. Since any
changes to an old release takes away from the development time of a new release, which may
cause pressure on the development process. In development WorkComp uses the waterfall
method. This method uses stages where one stage leads to another, starting with a design, then
making an estimate, then planning, and then development. Between design and estimation is a
high level of uncertainty, meaning that it is uncertain if what was designed can actually be
realized within the estimated time. An estimation can vary to 30% of its original estimate ac-
cording to WorkComp. To manage risks within this entire process good requirements manage-
ment is key. Requirements may change due to a changing environment, making the product
scope uncertain. Keeping these changing requirements in check, will help manage the devel-
opment process. If time would not be fixed, meaning a release date would not be set, this could
cause problems, there will be continuous changes in the product and no usable version of the
product will be released. It is important to manage the customer’s expectations, to make sure
these are realistic and are in line with the product being developed. Product management and
product marketing need to be in sink, to make sure that marketing is promoting the release
features being created.

214

International Workshop on Software Product Management (IWSPM)

4.3 AdviComp

AdviComp provides advice on IT projects, including product releases. According to Ad-
viComp time and cost are secondary functions in product development, while functionality and
quality have a primary function. When taking a look at the product life cycle the most errors are
made in the business case, at the start of the life cycle where the product is in development.
Also project management needs to manage communication between marketing and develop-
ment, so that what is being developed is also what is being marketed to the customer. Project
management is key, because it manages product expectations. Product development is influ-
enced by three variables, similar to the variables depicted in Fig. 3a by WorkComp. These
variables are, scope, time and budget (fig. 3b), also using three of the four mentioned variables
influencing development and a variation of the iron triangle.

While working on a product release it is important to continuously keep an overview of
who is responsible for what. Statuses need to be communicated and updated and communica-
tion channels need to be set in order to keep everything clear. Requirements management as
well as clear planning is important to the development process. When falling behind on plan-
ning it might be decided to take out some functionality, important in this process is timely
communication. It does not have to be a problem when releases of the same product are being
developed simultaneously, however it does take away from the next release. Deadlines should
therefore be maintained as strictly as possible. Clear information management is also important
in the development process in order to steer the development process in the right direction.
Information needs to be shared and there needs to be a coherence between the departments
working together, not stand alone teams, in order to have an efficient and effective product
development. A sense of awareness and responsibility needs to be created. This can be done by
asking “what do we want to achieve?” and analyzing how this can be achieved (Fig. 4).

Fig. 3a, 3b, and 3c Interdependency between the three key variables in product release devel-
opment according to the case study companies

215

REFSQ 2012 Workshop Proceedings

Fig. 4. Creating awareness

4.4 FinComp

FinComp is a large Dutch financial institution, which has multiple IT projects with several
releases per year. Multiple factors are key to successful product release development according
to FinComp. A tight planning, specifying deadlines and release dates, is important. This plan-
ning should only be filled for 80 percent of the time, leaving room for repairs and unexpected
situations. Even though planning maybe filled for 80 percent at the start of a release it can
happen that planning does not offer enough time. By making requirements autonomous, it is
easier to move a requirement to a next release.

An impact analysis should always be done in order to determine what the feasibility is in
relation to what the company wants to achieve. Also a regression test should be done in order to
retest everything there already is, to prevent basing anything new on something faulty.
The product development process consists of several stages which are depicted requirements
creation, design, build, test, implementation, and after care.

Parallel release cycles do not have to be a problem when releases are in a different stage of
their development process. Disciplines shift from one release to the next and each stage re-
quires mostly different disciplines and therefore different people. Management should therefore
try to steer towards a situation where releases are developed in parallel. However, it is im-
portant to have constant configuration management, which means that releases and their docu-
mentation are kept strictly separated to avoid any confusion.

FinComp distinguishes the same product development interdependent variables as Ad-
viComp (figure 4b): time, scope and budget. Whenever there is a change to an existing product,
there is a change in requirements. It is important to have quality checks of these requirements
as well as checking the preconditions set for the requirements. Those having to work with the
requirements afterwards should always be part of this check, to make sure if they understand
and are able to work with the requirements as they are. This process is depicted in figure 3c,
where the circle depicts the release requirements and around it shown what needs to be checked

216

International Workshop on Software Product Management (IWSPM)

for. Everything in a release should always be completely documented so steps can be tracked
back and provide clear information to potential new project members.

FinComp states that mistakes are often made at the beginning of the release process as well
as in the transition from one stage to the other. Creating good requirements can be hard, since
they do not always cover the problem that requires the change. Therefore the problem should
always be clearly described, defining what the problem is, where it is occurring and how it can
be solved. Communication about the problem is also essential and often goes wrong. Often the
what, why and gravity of the problem is depicted wrongly. Also with each stage there should be
a check of the previous stage, e.g. does the design match the requirements that were set for it
and does the product match the design.
Finally it is also significant to the release process to have the right people do the right work,
meaning that people should be working according to their capabilities.

5 Ten success factors of product release cycle management

Judging from the case studies conducted at the various companies, described in the previ-
ous chapter, a variety of ways for handling the product release cycle are used. However, ten
general success factors were identified for the product release cycle when analyzing these case
studies. These success factors can be divided into two domains management of the release and
contents of the release. These factors helped answer the research question “What are success
factors of project management in the product release cycle?” and are depicted in Table 3.
These success factors also include more general project management success factors, like plan-
ning and communication, as was described in the literature section of this paper.

Table 3. Success factors of product release

Domain Success Factors

Management of
the release

1. Strict planning, including dead-
line, checks and contingency re-
serves.

2. Clear communication amongst
project members.

3. Interim checks during the entire
process.

4. Full documentation for every
release.

5. Realistic customer expectations
of the product to be released.

Contents of the
release

6. Feasible and understandable re-
quirements specification.

7. Downsize functionality when
necessary.

8. Performing an impact analysis.
9. Managing product interdependen-

cies.
10. Strictly separating releases.

217

REFSQ 2012 Workshop Proceedings

SF1: Strict planning, including deadline, checks and contingency reserves
Keeping a strict planning, that includes deadlines and interim checks is key to delivering a
release on time, because it gives restrictions as well as provides clarity for project members. By
planning out the entire process and having additional contingency reserves for unexpected
situations like error fixing, it is more likely that a high quality release will be delivered within
the intended time frame.

SF2: Clear communication amongst project members
Communication amongst project members is important within the release process to ensure that
what is required is being build and that what is being build is actually necessary. For example if
a company would build a new release of their product including a feature that it automatically
changes the color every 5 minutes, but there is actually no desire for this new feature, there is
no point in building it. Communication helps to determine the what, why and necessity of a
release, as well as creating awareness amongst the project members.

SF3: Interim checks during the entire process
During the entire release development process there interim checks should be performed, mean-
ing when moving from one development stage to another it should be checked if everything is
understandable and done in the specified manner. For example did the design team design what
was specified in the requirements, but also are the requirements specified in such a way that the
design team will be able to create a design consistent with the requirements, and is the actual
product build in accordance with the specified design. These checks are necessary to prevent
major repairs to the created release, which would increase development costs and development
time.

SF4: Full documentation for every release
Everything related to a release needs to be documented, because documentation depicts what is
done, when something was done, and why something was done. It will help everyone involved
understand the release better and current documentation will provide much input for the next
release.

SF5: Realistic customer expectations of the product to be released
The customer expectations about the release should be managed to make sure these expecta-
tions are realistic. Due to many changes happening quickly in the IT industry changes in the
final release may occur as opposed to the original scope of the project, therefore the customer
should be made aware of this. Make sure stories about the product release don not grow out of
proportion, to make sure the customer does not have any unrealistic views of the product re-
lease being created.

SF6: Feasible and understandable requirements specification
Requirements management is key to product release management because requirements are at
the basis of product development. They determine what the end result of the product being
created/adapted will be. Therefore requirements need to specify the intended change and cover
the problem that needs solving. Requirements have to be feasible and understandable, so they
have to clearly describe the intended change as well as being realizable within the intended

218

International Workshop on Software Product Management (IWSPM)

time. E.g. too many requirements for a release will make realization of the next release within
the planned timeframe less feasible.

SF7: Downsize functionality when necessary
In the game between time, scope, money and quality, time and money are often fixed. This
means that a company cannot take forever to develop a release, as well as there not being an
endless source of money. Therefore functionality should be taken out when time or cost does
not allow to develop the entire planned scope or give it the full desired initial quality. Other-
wise there will be unnecessary costs, as well as an overrun on time which might also cause
problems for sequentially planned releases.

SF8: Performing an impact analysis
Every new release, has an impact on the organization it is developed by. The impact of each
release should therefore be checked. This will indicate if the new release covers what the or-
ganization wants to achieve, if the organization has the ability to build the release (is it feasible)
and also if it is worth spending the required resources to achieve the set goal.

SF9: Managing product interdependencies
Managing product interdependencies is necessary, because any change to a product might af-
fect a related product. Therefore the influence of a new release on the performance of related
products should always investigated. A new release is a lot less useable if it prevents any relat-
ed product from working.

SF10: Strictly separating releases
Often there might be a parallel track of releases of the same product, where one release is still
in its early stages, while another may almost be ready to go to market. To avoid chaos and
misunderstanding there has to be configuration management, meaning managing that the re-
leases and their documentation are kept strictly separate from each other. In this way preventing
situations where functionalities of a new release are specified in an earlier release, or the other
way around.

Keep in mind that it is the combination of the success factors that makes project management
of release cycles a success and that more of one factor will not necessarily mean an organiza-
tion will me more successful in managing their release cycle. As with most things, too much is
often also not a good thing.

6 Conclusion and further research

This study has shown that there are several ways for handling the management of the prod-
uct release cycle. This paper has provided an overview for several companies working with IT
product releases and what they view as key success factors to this process. It was determined
that ten factors are key to product release cycle success. These factors can be divided into two
domains, management of the release and contents of the release. The management factors focus
on planning, communication, interim checks, documentation and customer expectations. The
content factors focus on requirements, functionality, impact, product interdependencies, and the

219

REFSQ 2012 Workshop Proceedings

separation of releases. Several of these key success factors, like communication and planning,
are also key success factors for project management in general.

This research looked into how project management of the product release cycle can be
made successful, however it did not look into how product release can be successful in accord-
ance with these factors. As well as what the influence is of lacking one or more of these success
factors is. Further research should look into what the gravity is of each success factor in relation
to developing a product release. Also it further research should look into the influence of these
success factors on the success of a product release.

6 References

[1] Project Management Institute, A guide to the Project Management Body of Knowledge, 3
ed., Newton Square, Pennsylvania, USA: Project Management Institute, 2004.

[2] S. Jansen and S. Brinkkemper, "Ten Misconceptions about Product Software Release
Management explained using Update Cost/Value Functions," in First International
Workshop on Software Product Management, 2006.

[3] C. Manteli, I. v. d. Weerd and S. Brinkkemper, "Bridging the gap between software
product management and software project management," in Proceedings of the 11th
International Conference on Product Focused Software, New York, 2010.

[4] D. Baccarini, "The logical framework method for defining project success," Project
Management Journal, vol. 30, no. 4, pp. 25-32, 1999.

[5] A. Collins and D. Baccarini, "Project success - a survey," Journal of Construction
Research, vol. 5, no. 2, pp. 211-231, 2004.

[6] T. Cooke-Davies, "The “real” success factors on projects," International Journal of
Project Management, vol. 20, no. 3, pp. 185-190, 2002.

[7] R. Atkinson, "Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other criteria," International Journal of Project
Management, vol. 17, no. 6, pp. 337-342, 1999.

[8] K. Beck, Extreme programming Explained, Addison-Wesley, 2000.
[9] A. Clarke, "A practical use of key success factors to improve the effectiveness of project

management," International Journal of Project Management, vol. 17, no. 3, pp. 139-145,
1999.

[10] M. Schindler and M. Eppler, "Harvesting project knowledge: a review of project learning
methods and success factors," International Journal of Project Management, vol. 21, no.
3, pp. 219-228, 2003.

[11] The Standish Group International, "Chaos report," The Standish Group International,
2009.

[12] E. Andersen, K. Grude and T. Haug, Goal Directed Project Management, London: Kogan
Page, 2003.

[13] S. Haines, The Product Manager's Desk Reference, USA: McGrawHill, 2009.
[14] P. Afonso, M. Nunes, A. Paisana and A. Braga, "The influence of time-to-market and

220

International Workshop on Software Product Management (IWSPM)

target costing in the new product development success," International Journal of
Production Economics, vol. 115, no. 2, pp. 559-568, 2008.

[15] C. Ebert, "the impacts of software product management," Journal of Systems and
Software, vol. 80, no. 6, pp. 850-861, 2007.

[16] I. v. d. Weerd, W. Bekkers and S. Brinkkemper, "Developing a Maturity Matrix for
Software Product Management," Lecture Notes in Business Information Processing, vol.
51, no. 1&3, pp. 76-89, 2010.

[17] S. Jansen and S. Brinkkemper, "Evaluating the release, delivery, and deployment
processes of eight large product software vendors applying the customer configuration
update model," in Proceedings of the 2006 international workshop on Workshop on
interdisciplinary software engineering research, Shanghai, China, 2006.

[18] B. Regnell and S. Brinkkemper, "Market-driven requirements engineering for software
products," in Engineering and managing software requirements, Dordrecht, Springer,
2005, p. 287–308.

[19] R. Novorita and G. Grube, "Benefits of structured requirements methods for market-based
enterprises," in International council on systems engineering sixth annual international
symposium on systems engineering: practice and tools, 1996.

[20] B. Regnell, L. Karlsson and M. Höst, "An Analytical Model for Requirements Selection
Quality Evaluation in Product Software Development," in 11th IEEE International
Conference on Requirements Engineering, Monterey Bay, California, USA, 2003.

[21] P. Carlshamre and B. Regnell, "Requirements lifecycle management and release planning
in market-driven requirements engineering processes," in IEEE International. Workshop
on the Requirements Engineering Process, Greenwich, UK, 2000.

[22] S. Sawyer, "A market-bases perspective on information systems development,"
Comminications of the ACM, vol. 47, no. 12, pp. 97-102, 2004.

[23] S. Jansen, "Alleviating the release and deployment effort of product software by explicitly
managing component knowledge," in Proceedings of the Workshop on Development and
Deployment of Product Software, 2005.

[24] J. Dul and T. Hak, Case Study Methodology in Business, Elsevier Ltd., 2007.

221

REFSQ 2012 Workshop Proceedings

Software Release Planning Incorporating Technological
Change – The Case of Considering Software Inspections

S. M. Didar-Al-Alam, Junji Zhi, Günther Ruhe

Software Engineering Decision Support Laboratory
University of Calgary, Calgary, AB, Canada

{smdalam, zhij, ruhe}@ucalgary.ca

Abstract. Release planning is a cognitively and computationally complex task.
It assigns features to different releases considering technological, business ob-
jectives and constraints. Current planning techniques ignore the impact of tech-
nological changes. However, these changes are more the rule than the excep-
tion.

Our proposed approach considers the impact of technological change. Our
model measures this impact in the revised effort needed to perform develop-
ment activities. While scope of technological change might potentially be very
broad, we focused on introducing software inspections, a technique empirically
proven to increase software development effectiveness.

In this paper, (i) a theoretical method of quantitatively incorporating technol-
ogy change impact into existing release planning model is discussed.; (ii) a so-
lution method using EVOVLE II is proposed; and (iii) results of an illustrative
case study using an example new technique software inspection are analyzed.
For the case study, real-world planning data and data about the impact of in-
spections taken from extensive range of empirical studies were used.

Keywords: Release Planning, Technology Adoption, Product Management,
Case Study, Software Inspections

1 Introduction

Release planning decides which feature to assign in which release [1]. Software com-
panies strive to make good release plan to attract customers and to satisfy stakehold-
ers. The ultimate goal of a good release plan is to achieve competitiveness and general
business success. On the other hand, in the context of fast-changing technology era,
software companies are facing the need to employ new technology into their product
lines or development process. Such industrial innovation and ability to confront the
emerging technology is important in terms of a company’s success because it can help
companies sustain a competitive advantage [2]. Existing research shows that comput-
er software industry needs to improve their work in carrying out transition to new
technology [3]. By effectively and coherently introducing new technology or new
tools, software companies can achieve the goal of shortening development lifecycle,
and, meanwhile, improving the quality of products or services. Research has shown

222

International Workshop on Software Product Management (IWSPM)

that some organizations, especially those who are subject to the increasing product
market competition, show a higher propensity to adopt technological innovations to
improve their products or services [4]. Usually adopting new technologies does not
start from scratch. Most companies have a deployed product line and owned product
road-maps. One of the important concerns for managers is creating product release
plans by adopting new technology considering its product line and product road-
maps.

Current release planning models often consider technology as an element as un-
changed during the development cycle. What happens to the old plans when the tech-
nology as an underlying factor has changed? The systematic integration of technolog-
ical change into existing release planning model has not been fully studied. This is the
main problem area analyzed and discussed in this paper. In this paper, (1) a theoreti-
cal method of quantitatively incorporating technology change impact into existing
release planning model is discussed, (2) critical information needed for applying these
approaches are stated; and (3) results of illustrative case study using an example new
technique software inspection are analyzed.

Some terms need to be clarified before stating the problem statement. Information
technology (IT) is defined as the acquisition, processing, storage and dissemination of
vocal, pictorial, textual and numerical information [5]. Technology adoption (TA) is
considered as studies regarding technology from a sociological perspective. In this
paper we considered introducing a new technology in software companies. The em-
ployees are software practitioners, playing both roles as technology adopters and im-
plementers. Most studies of TA are based on sociological models but the results of
these studies can be applied to software companies also but only with appropriate
modifications. The illustrative case study is an example of introducing inspections on
a real world release planning scenario. The paper is structured as follows. Section 2
describes related works of the problem context. Section 3 briefly describes about re-
lease planning. Section 4 explains our methodology used in this study. Section 5 ex-
hibits the setup of our illustrative case study and Section 6 analyzed the results ob-
tained from the case study, our achievements and limitations and Section 7 provides
the conclusion and future research possibilities.

2 Related Work

Incremental software development focuses on smaller releases of software products
sequentially with time, instead of waiting for a long period of development. It is cru-
cial to choose among the features for the earlier releases of the software product [6].
Considering technical precedence among the features, the stakeholders’ choice and
balance between required and available effort, all features are prioritized [6]. Release
planning determines a collection of features for future releases that is most attractive
to the users and the customers [1]. Some popular approaches of feature prioritization
are studied and compared by J. Karlsson et.al. in [7] which are useful in release plan-
ning. These methods includes AHP [8], binary search tree (BST) creation, greedy
approach etc. G. Ruhe et. al. in [9] presented a quantitative study of different software

223

REFSQ 2012 Workshop Proceedings

release planning schemes under risk and resource constraints. Our paper has consid-
ered EVOLVE II for discussing software release planning. EVOLVE II is a systemat-
ic method for planning product releases [1] that introduces hybrid intelligence, a
combination of human and computer intelligence for software release planning [10].

Technology adoption (TA) brings ready technology to the users. TA is an interdis-
ciplinary research study, involving economics, psychology, management, engineer-
ing, technology itself, etc. [4, 11–13]. M. Huggett in his paper [13] shows that adopt-
ing new technology may initially lead to productivity fall and then later rise. Five
broad factors like, commitment, knowledge, communication, planning and infrastruc-
ture are identified in [12] which are associated with information system implementa-
tion success or failures. Researchers examined how and when one organization ac-
cepted technology in their decision-making efforts in [14]. S.A. Brown et. al. in [15]
reveals a different pattern of relationships in mandated use of new technology situa-
tion compared with voluntary technology adoption cases where ease of use and per-
ceived usefulness are mentioned as the primary and the second determinant of em-
ployees’ behavioral intention.

Technology road mapping (TRM) is a useful visualization technique to support de-
cision-making, strategic planning and to enhance communication. TRM decision-
making process is complex, involving different aspects such as technology, manage-
ment and business. Some researchers propose T-plan process to support starting-up
process of the firms [16]. B. Yoon et.al. proposed a methodology for TRM in [17]
where morphology analysis (MA) derives technological opportunities and assist
TRM. M. V. Zelkowitz et. al. presented in [3] a discussion about how industrial or-
ganizations evaluate new technologies. A. W. Brown et al. proposed a theoretical
framework to evaluate a new technology in [11] which can serve as a basis for a sys-
tematic approach for research community to evaluate software technologies. Features
are essential abstractions [5] that both customers and developers understand.
EVOLVE II plans for product releases [1]. It integrates the involvements of all major
stakeholders and provides decision support for them using hybrid intelligence [10].

Software inspections (SI) are widely believed to be the most cost-effective method
for detecting defects. Researchers described the scope for inspection tool support and
review currently available products in [18]. [19] provides quantitative evidence for
the benefit and cost of SI and also points out the reluctance of project managers to
apply SI. C. Jones et.al. evaluates different methods of training software professional
personnel in the context of 2008 financial meltdown and rapidly evolving new tech-
nologies [20]. Authors presented the importance of training in an organization espe-
cially for a new tool or technique in [21]. A course curriculum related to software
inspection training is presented in [20]. Empirical study on software employees train-
ing and its impact is presented in [22]. Training need analysis for an organization
depending on training budget has been analyzed in [23].

224

International Workshop on Software Product Management (IWSPM)

3 Release Planning

Software product features are essential abstractions that both customers and develop-
ers understand [5]. Release plan is assignment of features to certain releases. To
achieve competitiveness and general business success, software companies are con-
cerned about how their release plans can attract customers and get higher satisfaction.
Making good release plans requires the decision-makers to assign attractive product
features to the right release under the constraint of limited resources. Resource here
refers to all human and non-human resources which are utilized to implement the
features. All features have specific requirements for resources. But total resource
capacity is limited and lower than the total demand of features. Release planning ob-
jective is to choose the best combination of features for a release which are possible to
implement within the limited resources. Stakeholders provide prioritization of their
feature demands which helps to predict which features are most beneficiary to offer in
a future release.

Release planning problem can be modeled as a collection of N features F = {f(1),
f(2),…,f(N)} that need to be decided when to release. The term ‘feature’ is literally
broadened and can refer to new functionalities, change requests or defect corrections
[2]. The solution to the problem is then represented by decision vector x =
(x(1),x(2),…x(N)), when

(1) x(n)=k if feature is offered at release k (n=1… N)

(2) x(n)=0 if feature is not offered in any release.
We consider T types of resources for the implementation of features. In its simplest

case, for T = 1, we just consider the total effort needed. Further, we define Cap(k,t) as
the capacity of the tth type of resource in the kth release. Each feature demands an
amount r(i,t) of resources of type t. Therefore, the problem- is to come up with a solu-
tion vector x = (x(1),x(2),…x(n)), which satisfies the constraints:

(3)
for all releases k and all resources type t and maximize the objective function. The
objective function can be different depending on the release planning framework uti-
lized. Further details about release planning methods and tools can be found in [1].

4 Methodology

The key hypothesis of this paper is that, technological changes have a substantial
impact on the structure and content of release plans. The impact of employing a new
technology can be substantial in a software organization. For the purpose of simplici-
ty, we let the impact be reflected in the feature implementation effort estimation and
resource allocation. Technological change problem is modeled numerically as the
resource capacity re-distribution and implementation of effort re-estimation along
with addition of extra efforts.

225

REFSQ 2012 Workshop Proceedings

4.1 Release Planning without Consideration of Technological Changes

Different release planning models are proposed to address problems encountered in
different scenarios. One of the systematic methods for planning product releases is
EVOLVE II [1]. EVOLVE II method integrates a number of new concepts and their
innovative implementation, since the initial publication of EVOLVE in [9]. EVOLVE
II relies on the paradigm of hybrid intelligence [10] and follows the broadly applica-
ble idea of evolutionary problem solving [7]. The interaction between formalized
problem solving based on the application of specialized optimization algorithms and
the capabilities of human experts. The steps and their content are listed in Table 1. For
the initial case of the case study we consider a release planning procedure using
EVOLVE II framework without considering any technological changes.

Table 1. Steps of EVOLVE II.

Step 1: Specification of key parameters of the planning problem based on corporate strat-
egy and the specific project information available.

Step 2: Determine weights of relative importance of criteria.

Step 3: Stakeholders with pre-selection role prioritize all features in order to select a rea-
sonable set of candidate features for the more comprehensive, multi-criteria priori-
tization and subsequent planning. This step includes a validation of the pre-
selected features.

Step 4: Prioritization of features by stakeholders following the multi-score method is
performed for all defined criteria.

Step 5: It gives an overview of the ranking of features and the degree of commonality in
stakeholder opinions.

Step 6: Stakeholders with assigned resource-estimation role analyze the set of candidate
features and available resource types. They estimate the amount of resources
consumed by each feature.

Step 7: The product manager formalizes the features’ technological (dependencies, pre-
assignments) as well as all other resource or risk related constraints.

Step 8: Optimization algorithms are applied in order to obtain a portfolio of five opti-
mized and diversified release plan alternatives.

Step 9: Analysis of the optimized alternatives in terms of their quality and resource con-
sumption.

Step 10: Projection of the expected reaction of the stakeholder in terms of excitements
(with the assignment of individual features), disappointments, and surprises relat-
ed to the assignment of all the individual features.

226

International Workshop on Software Product Management (IWSPM)

Step 11: The question answered by the what-if-analysis is how certain changes in the prob-
lem space (the specific project data) imply changes in the solution space.

Step 12: Selected stakeholders are asked for their priorities related to the proposed plan
alternatives.

Step 13: Final plan selection based on the previous evaluation and analysis reports.

4.2 Incorporating Technology Change Factors

Numerous factors associated with technology change can be identified only by work-
ing jointly with a real life project. A new technology adoption model for an organiza-
tion is specified in [14]. TA decision is done under a number of technical and philo-
sophical factors like the family of the new tool, comfort of use, compatibility with
previous tools and business demand etc. These factors affect some considerable crite-
ria like perceived ease of use and perceived usefulness values in adopting new tech-
nology. The benefit and risks related to the new technology along with the overall
adoption process of a new technology gets affected from all these considerations.
Moreover, some important parameters to be considered for TA are like - how the
software is developed, which life cycle model is used in development, tools and tech-
nology that are applied, team size, parameters that the company uses to describe its
development, effort allocation, the degree of usage of the new tool, the training need
etc. In our illustrative case study the scenario has been simplified by limiting our
scope to the major affecting factors only like - effort allocation, degree of usage of the
new technique, and training. All other parameters are considered out of scope of our
study for the time being and used in our study with constant values. We also narrowed
down the scope for the term “new technology” for simplicity by exclusively consider-
ing the impact of inspections as an example for looking at the impact of technological
change on software release planning. In our study we considered release planning
using the ReleaseplannerTM tool [24] and EVOLVE II release planning framework.

4.3 Problem formulation

Release planning framework like EVOLVE II considers an effort matrix Me shown in
equation (4) below where the value of represents the effort cost for the task in

 feature f(j) It is considered that if N is the maximum number of features and T is
the maximum number of resources available then equation (4) is true for the task
in feature f(j) if and . In our model, we considered tech-
nology change factors impacts effort estimation. The using new technology during the
overall feature implementation process is considered as a new task for each feature. In
order to reflect this idea in a formalized way we added a new row

227

REFSQ 2012 Workshop Proceedings

(4) =

 in the effort matrix . This newly added row
represents the new task efforts for using the new technology. Besides, the earlier ef-
fort cost value is also re-estimated and represented by Re-estimation is done
because employing new technology impacts the resource consumption of each fea-
ture. The modified effort matrix is visible in equation (5) below.

(5) =

Along with these changes resource capacities are also re-estimated. Let
represent the capacity of the mth type of resource in the kth release for m = 1 …

 Re-estimated effort values are dependent on the inspection scheme used to re-
estimate effort and resources. Re-estimated effort matrix is visible in equation (5).

satisfies the resource capacity constraint shown in equation (6), for all releases k
and all resources type m.

(6) for m = 1 … (T+1)
Generally, the total resource capacity for each release remains equal. The new task

added for adopting new technology also consumes resource from this limited capaci-
ty. The assumption is based on the fact that software organizations usually do not
change resources, before or after introducing a new technology. This assumption ex-
pressed in a formal way in equation (7) for all releases k where T is the total number
of resources.

(7)

4.4 Formulation of the Effort Estimation Model

Illustrative case study assumed a software company plans to employ SI to improve
developers productivity and quality of the software products to reach a higher level in
software maturity. SI helps software developers to avoid predictable pitfalls and
through static testing verifies that software meets its requirements [21], [25]. SI is a
proven technique to improve quality and reduce costs [26]. For illustrative purpose in
our case study, results from Perspective Based Reading (PBR) [27] inspections are
analyzed. It costs approximately additional 10% of the total feature implementation
effort to complete the inspection.

The systematic integration of technological change into existing release planning
model requires a smooth technology transition from current plans towards the new
technology. Training is a crucial issue in it. Training means acquiring new skills,

228

International Workshop on Software Product Management (IWSPM)

knowledge regarding a specific task through proper organized form of teaching in
order to improve productivity and performance. Without proper training provided,
introducing new technology in organization is highly risky and time intense [22].
Training also introduces important change factors to the organization like- adds addi-
tional effort [21], consumes resources [21], and employees productivity is highly
dependent on the provided training [22]. Training need is dependent on numerous
factors. For simplification we limit our scope of study only to the major factors like
learnability and knowledge level of participating employees [22].

Training also has a final impact on the total effort change through affecting em-
ployee’s productivity. Training depends on the learnability & knowledge level of the
participants. N. Hanakawa et. al. presented a knowledge model in [22] which clearly
illustrates, how staff’s knowledge level and learnability changes with time and
productivity changes with this learning and experience gathering process.

Table 2. Relationship between Productivity and Inspection in different releases.

Release Knowledge Productivity
Effort spent in releases for

PBR (% of total effort)
Release 1 Training for basic knowledge 50% [22] 20%
Release 2 Low improvement 65% 15
Release 3 High improvement 95% 11%
Release 4 Experienced 100% [22] 10%

In our case study we assume that staff’s productivity reaches from initial 50% of
their maximum productivity [22] to their maximum 100% productivity within four
releases. The growth of productivity from release 1 to 2, 3 and 4 is shown in Table 2.
Productivity estimation in Table 2 follows the productivity pattern suggested in [22].

5 Illustrative Case Study - The Case of Introducing Software
Inspections

The illustrative case study is performed using our own developed simulation applica-
tion and the ReleasePlannerTM [24] tool that implements the EVOLVE II framework.
Experimental data is based on one of our industrial partners’ previous project with
some minor changes. All assumptions are considered with valid proof of justifica-
tions. The basic scenario does not include any technology change and compared with
projects that incorporated technological changes. Main attributes of basic scenario are
shown in Table 3. We assumed different scenarios where inspection and training ef-
forts are applied. Our simulation application modifies the basic project data according
to flexible choice of inspection schemes, inspection team size and training schemes
etc. ReleasePlannerTM tool creates release plans for this new project. Results are com-
pared against the basic scenario.

Illustrative case study considered PBR inspection scheme. Training for technology
adoption is a crucial issue. We calculated from [20] that maximum of 24% of total

229

REFSQ 2012 Workshop Proceedings

employees can be involved in inspection. In illustrated case study for total employee
of 25 persons we considered the team size for inspection is 5 person [20]. Software
inspection training topics and time and different schemes are presented in [20]. The
illustrative case study considered some known training programs and their time limits
[20]. We have also considered training effort changes over release to releases [22]. In
our application user can flexibly choose the value for these parameters to see its im-
pact on technology change.

Table 3. Major project settings in basic project without inspection

Type Value Type Value Weight
No of features 100 No of releases 4
No of feature groups 6

Release weights

Release 1 9
No of stakeholders 91 Release 2 7
No of total employee 25 Release 3 6
Inspection team size 5 Release 4 5
No of resources 5 Planning

criteria
Sales 9

No of tasks per feature 5 Quality 9

Table 4 represents the effort for training and inspection estimations for the project
when PBR inspection was first introduced (PBR1) and a follow up project (PBR2).
Employee’s productivity is different between releases while PBR is first introduced.
As the employee gets more experienced the productivity increases over time.
Assumed staffs productivity are also visible in Table 4.

Table 4. Productivity and Training value for projects with PBR Inspection

Description
Release 1 Release 2 Release 3 Release 4

PBR1 PBR2 PBR1 PBR2 PBR1 PBR2 PBR1 PBR2

Inspection (%
of total effort)

20% 10% 15.3% 10% 10.5% 10% 10% 10%

Training
(days)

62.5 5 22.5 5 10 5 5 5

6 Analysis and Discussion of Results

6.1 Overview

The illustrative case study considers a scenario of a software company which is plan-
ning to introduce a new technology and already have a well-established release plan.
Major focus of our study is on the changes happened in the organization due to
changes in the technology. The impact of technology change will finally be reflected
by effort changes. Our estimation model shows these changes based on empirical data

230

International Workshop on Software Product Management (IWSPM)

obtained in earlier research works. Our model is based on the study of [25] that can
lead us to the venn-diagram shown in Figure 1. According to this PBR eliminates
approximately 23% rework effort while adds additional 10% of the total feature im-
plementation effort to complete the inspection.

Analyzing these changes in different possible scenarios helps us to understand how
introducing a new technique can affects the current release plan of an organization.
Results obtained in this case study are utilized to discuss the main goal of this paper.
Does technology change have an impact on release planning that need to be consid-
ered? We limited our discussion in three different scenarios which includes a

1) project without any inspection (baseline case)
2) project where inspection is first introduced (called PBR1) and
3) follow up project of earlier projects where inspection was introduced earlier

(called PBR2).
In rest of our discussion we will denote these three scenarios as S1, S2 and S3 cor-

respondingly.

Figure 1. Rework elimination for inspection (Data adopted from [25])

6.2 Incorporating Technology Change Factors in Release Planning
Framework:

Adopting a new technology like SI introduces additional task with extra effort con-
sumption in existing release planning scenario. Throughout our study we used
EVOLVE II [1], a well-known framework for strategic decision making, to plan soft-
ware releases. We considered additional effort for inspection as a new task “Inspec-
tion” for each feature. Training is considered as features, to be completed by a group
of employees with different level of efforts in different releases. Considering the im-
pact as a change in effort distribution makes it easy to incorporate in release planning
framework. As the total resource capacity is fixed the leftover resources from rework
elimination are utilized to serve SI tasks and Training features. SI effort differs from
release to release depending on the productivity and training needed by the employ-
ees. Generally in later releases the training need gradually minimizes and productivity
grows higher [22].

231

REFSQ 2012 Workshop Proceedings

6.3 Changes in Selecting Features between Different Scenario Release
Plans due to Adopting New Technology

A comparative study must be done in between all the scenarios considered in the case
study to measure the changes taken effect in the release plans due to the adoption of
new technology. Hamming distance measures the number of changes between two
equivalent elements like two strings. So we considered using Hamming distance as
metric to measure the number of changes in feature selection between different sce-
narios projects release plans. For three different scenarios we considered three pairs of
comparison. The comparison is done for four releases separately and for the features
that are been postponed in all four releases. The ratio of feature change correspondent
to the total features offered in a release is considered in calculation. To normalize the
results, the number of change in feature selection is presented as a percentage in re-
spect of the total features offered by the releases.

The results of the comparisons are shown in Figure 2. Our focus is not to show
any specific pattern in the changes between releases or between project scenarios.
Instead, the focus is to point out this major phenomenon that adopting a new technol-
ogy has a high impact on the release plan. Most of the criteria are considered constant
but the effort distribution for each scenario is different due to the adoption of the new
technology. This has caused such highly visible differences among the release plans.
From above discussion and Figure 2 it is clear that technology change is a highly
potential issue to be considered while planning for future releases to make it more
adaptable to changes.

Figure 2. Comparison of feature changes in release plan for different scenarios

6.4 Changes in the Quality of Release Plans

To analyze the quality of release plans, of our case study the major parameters con-
sidered are- total stakeholder feature point (TSFP) and stakeholder feature point (SFP)
[1]. A clear conceptual view of SFP, feature scores and TSFP is presented in [1]. The-
se two parameters reflect the satisfaction level of the stakeholders.

Figure 3(a) presents a comparison among project scenarios S1, S2, and S3 in re-
spect of their TSFP values. TSFP is depicted on the Y axis and the different scenarios

232

International Workshop on Software Product Management (IWSPM)

are depicted on the X axis. Introducing a new technology creates a clear difference in
the release plan performance in respect of TSFP which is clear in Figure 3(a).

(a) (b)

Figure 3. Comparison among the projects using (a) total stakeholder feature points (TSFP)
and (b) stakeholder feature points (SFP)

Well managed technology adaptation resulted in TSFP increase as shown in Figure
3(a). This increase of the TSFP value directly corresponds to an increase in customer
satisfaction. A more detailed view is available in Figure 3(b). Therein, SFP are plotted
for the different releases and the three scenarios under scrutiny. Some degrade in
quality happened because of low productivity of untrained employees in scenario S2
when the inspection is introduced for the first time. But in the follow up project train-
ing requirement is minimal and the productivity is maximum as PBR is already im-
plemented. It shows benefit in Release 1 and 4 in this our example over the past two
scenarios in respect of SFP.

Figure 4. Comparison among the scenarios using Resource utilization factor

Resource utilization factor (RUF) is the ratio of total resource usage in respect of
the total available resource. RUF represents the efficiency of a release in respect of
resource usage. Lower RUF value means, less difference between available resource
and used resource and higher resource utilization. In Figure 4, we considered RUF
value to compare results among the scenarios, to understand how well they utilize
their resources. RUF value is presented in Y axis in respect of different tasks in X
axis. Different scenarios are presented in different shades. RUF provides a view of

233

REFSQ 2012 Workshop Proceedings

the efficiency of the release plan in satisfying feature implementation requirements.
From figure 4 it is clear that using inspections offers higher resource utilization and
lower RUF values compared to the baseline scenario S1. Scenario S3 shows con-
sistent improvement over baseline scenario S1 in resource utilization for all tasks. So
with introducing new technology the resource usage shows visible improvement and
has high impact on the quality of the release plan.

6.5 Summary and Limitations

In this paper, our approach does not focus on the financial or macro-organizational
view of technology adoption. Rather, we concentrate on the strategic planning level of
concerns in the process of technology adoption. It can serve as a new perspective for
software industry in adopting new technologies. From a preliminary illustrative case
study, we propose and analyze a data-driven planning prototype that takes technology
change into consideration. We attempt to provide a paradigm for the technology
change management process. An illustrative case has been studied using a sample
project with 100 feature requirements, 91 stakeholders, 25 employee involvement.
Four releases are planned with two planning criteria using the release planning
framework EVOLVE II. In three different scenarios the results of introducing new
technology Inspections is studied. To the best of our knowledge studying impact of
new technology adoption on release planning for software engineering has not been
highly focused in earlier literature. We focused to perform this study using specific
instance of technology software inspection in a specific instant of release planning
framework EVOLVE II.

This work has been conducted to analyze the impact of adopting a new technology
in an existing release plan. The real life project integration was not available. Re-
source limitation and lack of real project integration is a threat to the validity. In this
project the term new technology is narrowed down to engineering refinement catego-
ry and further to software inspection (SI) technique for simplicity. All the studies and
estimation models are created for SI. Number of factors that may affect a new tech-
nology adoption have considered out of our study scope. Nature of an inspection tool
cannot represent the nature of all new technologies. To discuss about a new technolo-
gy and its impact an empirical study have to be conducted which considers varieties
of technology of different genre. Moreover for SI tool the rework elimination is con-
sidered equal for all type of tasks for simplicity. All the results are obtained in artifi-
cial experimental laboratory setup. So the concluding statements presented in this
paper can help in future research by providing a direction but are subject to be veri-
fied by proper empirical study with real life projects integrations.

7 Conclusions and Future Research

The illustrative case study and the research work presented earlier results in three
main conclusions. These conclusions might contribute in future research work, but are
planned to be further validated by empirical studies with real life projects.

234

International Workshop on Software Product Management (IWSPM)

� Conclusion 1: Adopting new technology effects release planning decisions.
Technological change impact can be considered as a potential parameter for re-
lease planning process that can substantially affect the release plan and might re-
sults in improvement.

� Conclusion 2: Adopting new technology effects release plan performance. It is a
trade-off that may bring short-term negative effect but if it is well incorporated it
normally brings benefits in the long run.

� Conclusion 3: If technology changes can be described by additional and revised
effort estimates for feature implementation, the planning can be performed by the
existing method EVOLVE II.

But in our paradigm in this paper, we treat technology as a new technique ignoring
many aspects of technology and focusing on the impact of product requirements and
management concern. We model the factor initial technology acquisition cost as train-
ing efforts assigned to each feature and later serving as an input for the planning pro-
cess. Long-term effect on quality, time to market, or cost of the organization’s prod-
ucts and services, are not included in our study.

Future research is intended to conduct on real life practical data through proper
empirical studies. An attempt can be taken to justify and prove the statements pre-
sented above in respect of an empirical study done on different types of new technol-
ogy adoption in real life projects. And if the study requires, a future researcher might
refine the estimation models stated here to make it more appropriate to the real world.
In addition, future research will enlarge the notion of technological change to make it
more broadly applicable. Besides inspections, process changes or introduction of tools
for testing and development could be introduced in a similar way.

Acknowledgment

This research has been partially supported by the Natural Sciences and Engineering
Research Council of Canada, Discovery Grant 250343-07. The comments of the re-
viewers have helped to improve understandability of the paper.

References

1. Ruhe, G.: Product Release Planning: Methods, Tools and Applications. CRC Press (2010).
2. Muller, A., Merlyn, P., Valikangas, L.: Metrics for innovations: Guidelines for developing

a customized suite of innovation metrics. Engineering Management Review, IEEE. 33, pp.
55.

3. Zelkowitz, M.V., Wallace, D.R., Binkley, D.W.: Experimental validation of new software
technology. Series On Software Engineering And Knowledge Engineering. 12, pp. 229–263
(2003).

4. Goel, R.K., Rich, D.P.: On the adoption of new technologies. Applied Economics. 29, pp.
513-518 (2010).

5. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. Software.
19, pp. 58-65 (2002).

235

REFSQ 2012 Workshop Proceedings

6. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach.
Information and Software Technology. 46, pp. 243--253 (2004).

7. Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. Information and Software Technology. 39, pp. 939–947 (1998).

8. Karlsson, J.: Software requirements prioritizing. Proceedings of the Second International
Conference on Requirements Engineering. pp. 110–116 (1996).

9. Ruhe, G., Greer, D.: Quantitative Studies in Software Release Planning under Risk and
Resource Constraints. Proceedings of the 2003 IEEE International Symposium on Empiri-
cal Software Engineering (ISESE 2003). pp. 262 – 271 (2003).

10. Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Software Release Planning. Journal of Hy-
brid Intelligent Systems. 1, pp. 99-110 (2004).

11. Brown, A.W., Wallnau, K.C.: A framework for evaluating software technology. Software.
13, pp. 39-49 (1996).

12. Brown, S.A., Chervany, N.L., Reinicke, B.A.: What matters when introducing new infor-
mation technology. Communications of the ACM. 50, pp. 91-96 (2007).

13. Huggett, M.: Does productivity growth fall after the adoption of new technology? Journal
of Monetary Economics. 48, pp. 173-195.

14. Sauter, V.L.: Information Technology Adoption by Groups Across Time. International
Journal of e-Collaboration. 4, pp. 51–76 (2008).

15. Brown, S.A., Massey, A.P., Montoya-weiss, M.M., Burkman, J.R.: Do I really have to?
User acceptance of mandated technology. European Journal of Information Systems. 11,
pp. 283-295.

16. Phaal, R., Farrukh, C., Mitchell, R., Probert, D.: Starting-up roadmapping fast. Engi-
neering Management Review. 31, pp. 54-54 (2003).

17. Yoon, B., Phaal, R., David, P.: Morphology analysis for technology roadmapping: applica-
tion of text mining. R&D Management. 38, pp. 51-68 (2008).

18. Macdonald, A.F., Miller, J., Brooks, A., Roper, M., Wood, M.: A Review of Tool Support
for Software Inspection Scope for Tool Support. Seventh International Workshop on Com-
puter-Aided Software Engineering. pp. 340 - 349 (1995).

19. DeBaud, J.M., Laitenberger, O.: An encompassing life cycle centric survey of software
inspection. Journal of Systems and Software. 50, pp. 5–31.

20. Jones, C.: Software Engineering Best Practices. McGraw-Hill Pro-fessional Publishing,
New York, NY, USA (2009).

21. Fagan, M.: Advances in Software Inspection. IEEE Transactions on Software Engineering.
12, (1986).

22. Hanakawa, N., Morisaki, S., Matsumoto, K.: A learning curve based simulation model for
software development. 20th international conference on Software engineering. p. pp. 350--
359 (1998).

23. Bartel, A.P.: Formal Employee Training Programs and Their Impact on Labor Produc-
tivity: Evidence from a Human Resources Survey. (1989).

24. ReleasePlanner, www.releaseplanner.com.
25. Boehm, B., Basili, V.R.: Software Defect Reduction Top 10 List. Computer. 34, pp. 135-

137 (2001).
26. Anderson, P., Reps, T., Teitelbaum, T., Zarins, M.: Tool support for fine-grained soft-ware

inspection. Software. 20, pp. 42-50.
27. Basili, V.R.: Evolving and packaging reading technologies. Journal of Systems and Soft-

ware. 38, pp. 3-12 (1997).

236

International Workshop on Software Product Management (IWSPM)

Are my Features Innovative Enough?

– A Multi-Variable Innovation Strategy Model Proposal

Björn Regnell

Dept. of Computer Science, Lund University

bjorn.regnell@cs.lth.se

Abstract. A successful strategy for release planning is critical to an organization

that offers software innovations to a market. This paper proposes the INNOREAP

model, aimed at supporting the analysis of different feature selection strategies

when trading off feature innovativeness against other innovation-related feature

properties, such as effort, lead time, and revenue. Potential applications and lim-

itations of the model are discussed in relation to directions of further research.

Keywords: release planning, software engineering, product management, inno-

vation strategy, requirements engineering, new product development

1 Introduction

The question in the title regards whether the features of a release plan [1], [3] are rep-

resenting an appropriate mix between incremental improvements demanded by the cur-

rent market and novel product extensions that can increase future market shares. The

answering of these types of questions is expected to be in the competence of a product

manager [8] when carrying out strategic decisions-making for technology investments

in future software products [5]. Finding answers is, however, inherently difficult and

involves human expert judgment with significant uncertainty [6], [5]. Assessment of

innovativeness before getting feedback from the market is particularly challenging [4].

This paper proposes a model that is intended to be both simple and useful in reason-

ing about different strategies for release planning, when balancing different innovation-

related properties. The model explicitly includes innovativeness [2] (as one of multiple,

inter-related decision variables), which to the best of our knowledge is not part of ex-

isting release planning models, cf. the systematic literature review on release planning

by Svahnberg et al. [7]. The model is subsequently called the INNOREAP model de-

noting Innovation strategy in Release Planning. The purpose of this paper is to share

initial ideas and to trigger discussions on if and how the model can be useful, as a start-

ing point for further model development, and trials in conjunction with existing release

planing models in particular and New Product Development models in general.

The paper is structured as follows. Section 2 defines INNOREAP. Section 3 dis-

cusses potential applications and limitations. Section 4 concludes the paper.

2 The INNOREAP Model

The basic idea of the INNOREAP model is to provide a framework of concepts for rea-

soning about innovation strategy in release planning. As the release planning problem

237

REFSQ 2012 Workshop Proceedings

involves uncertain estimates of e.g. effort and business value, one could argue that a

model should be rather coarse-grained; a very detailed model may not only be unnec-

essarily complex, but may also impose a false sense of accuracy.

INNOREAP reduces the release planning problem to a binary decision problem,

where the product manager is faced with choosing only one out of two classifications

of features for a limited set of feature properties. Thus decision-making is reduced from

requiring ratio- or ordinal scale estimation to one binary choice per decision variable.

Decision variables. How many, and which decision variables to include in an inno-

vation strategy model for software release planning is open to investigation, and the

trade-off between expression power and simplicity is most likely context dependent.

The initial version of INNOREAP proposed here includes four decision variables that

may be of relevance for making trade-off decisions in innovation strategy management:

D : the Degree of innovation of a feature,

E : the Effort needed of human development resources in feature implementation,

A : the Allocation span of resources over releases that a feature require, and

R : the Revenue contribution of a feature.

For each of these decision variables only two different values are defined in order

to reduce the general decision problem to a simpler 4-criteria binary choice problem.

Assume that we have a feature universe F of N candidate features: F = {fk}, k ∈
[1..N] and each feature fk can have a property X . We express that it belongs to a set

of all feature candidates with property X by the notation FX where FX ∈ F and X
is the first letter of the name of the property. We now make the following definition for

our four feature properties D, E, A, R respectively:

Definition D(fk) ∈ {Upgrading, Innovative} A feature fk belongs to the set of

all upgrading features FU if it gives an incremental improvement of existing prod-

uct functionality and/or quality. In contrast, a feature is innovative and thus in FI

if it is judged to represent a novelty on the market that brings previously unseen

but significantly valuable functionality and/or quality to current and/or future cus-

tomers. Thus an innovative feature is a more radical extension of a software product

compared to an upgrading feature.

Definition E(fk) ∈ {Big, Small} Let e ∈ [0..1] represent a threshold ratio and Elim

the limiting available effort for the next release measured on a ratio scale of e.g.

person hours. Let also Efk represent the estimated effort of feature fk. A feature is

defined to belong to the set of all big effort features, fk ∈ FB , if it has an estimated

effort above the threshold eElim, thus E(fk) = Big if Efk > eElim, and vice

versa: E(fk) = Small if Efk ≤ eElim.

Etot =
∑

F
Efk is the total effort required by all candidate features F .

In practice, Etot almost always exceeds Elim, hence the need for release planning.

Definition A(fk) ∈ {OneRelease,MultiRelease} A feature fk belongs to the set of

all one-release features FO if it is possible to fit the feature into the next release as it

238

International Workshop on Software Product Management (IWSPM)

is estimated not to allocate more than all available resources and its implementation

is estimated to be feasibly completed before the upcoming next release date. A

multi-release feature, on the contrary is not feasible to fit within the constraints of

the next release. Such constraints can be e.g. its currently decided release date, the

availability of required qualified resources, the capability of the current platform

and software architecture etc.

Definition R(fk) ∈ {HighRevenue, LowRevenue} Let r ∈ [0..1] represent a rev-

enue decrease threshold and let R(F) denote the total revenue of a release if it

would include all features in some set F = {fk}, k ∈ [1..n], F ⊆ F . We define

a feature to be a high-revenue feature, if its exclusion render a relative revenue

decrease normalized to the total revenue that is above the threshold r:

R(fk) = HighRevenue ⇔ R(F)− R(F − fk)

R(F)
> r

The above definitions entail eight subsets of F , namely FI , FU , FS , FB , FO, FM ,

FH , and FL respectively. The are pairwise complete partitions of F so that |FB

⋂FS | =
0, |FH

⋂FL| = 0, etc., and |FB

⋃FS | = N , |FH

⋃FL| = N , etc.

We also define FXY ZW to denote the subset that only has features for which all

distinct properties X , Y , Z, and W holds. As there are four properties with exactly two

values each, we have 24 = 16 different such sets that build up the candidate feature

universe F =
⋃

x Fx, where x ∈ {ISOH,USOH, IBOH,UBOH, ... etc }, using

first letters of decision variable values for brevity.

Properties of sets of features. We define the following properties of an arbitrary set

of features F ⊆ F , where n = |F | is the number of features in F , and FX ⊆ FX . The

first four feature set properties defined below are all in the [0..1] interval:

Definition innovativeness(F) = |FI |/(|FI | + |FU |) = |FI |/n The innovativeness of

a set of features is defined as its ratio of innovative features.

Definition effortfulness(F) = |FB |/(|FS | + |FB |) = |FB |/n The effortfulness of a

feature set is defined as its ratio of big effort features.

Definition preallocation(F) = |FM |/(|FM |+ |FO|) = |FM |/n The preallocation of

resources beyond the current release in a feature set is characterized by its ratio of

multi-release features.

Definition gainfulness(F) = |FH |/(|FH | + |FL|) = |FH |/n The gainfulness of a

feature set is defined as its ratio of high-revenue features.

Definition The predicate isOverscoped(F) ∈ {true, false} is true if the sum of all

efforts of the features in F exceeds the limiting available effort of the next release,∑

fk∈F

Efk > Elim. To determine if this predicate is true, we need ratio scale estima-

tions of efforts of all features in F .

239

REFSQ 2012 Workshop Proceedings

Definition The predicate isOverscopedBig(F) ∈ {true, false} is true if |FB | >
1
e , where |FB | is the number of big features in F and e is the effort ratio that is

used to define the distinction between big and small features. This definition seems

reasonable because if we would assume that all big effort features are as low as

the threshold effort of eElim we need to ensure, in order not to overscope with big

features only, that

|FB |∑

1

eElim < Elim ⇔ |FB |eElim < Elim ⇔ |FB |e < 1

To determine if this predicate is true, we only need to make binary estimates for

the features in F to determine if they are big or small with respect to e, rather than

the ratio scale estimates needed for the isOverscoped predicate. Note however

the limitation that the more easily determined isOverscopedBig predicate does

neither tell if the next release is overscoped by small features only, nor if it happens

to be overscoped by a mix of small and big features, even if isOverscopedBig is

false.

Strategies in release planning. We subsequently define a release planning strategy as

an ordering of decision variables that reflect a chosen relative importance of properties,

with the aim to support exploration of alternative strategies (discussed in Section 3):

Definition of a release planning strategy. Let Sx be an M -tuple of (xm)M1 , 1 ≤ M ≤
4, representing an ordering of the feature properties as defined by one or more of

our four binary decision variables xm belonging to either one of {I, U}, {S,B},

{O,M}, or {H,L}. E.g. the 2-tuple S(I,H) = (Innovative,HighRevenue), or

SIH for short, denotes the strategy where high-revenue features are prioritized less

than innovative features. If less than four feature properties are in x, then the or-

dering is said to be partial and not complete, representing that e.g. SIH does not

say anything about if the decision variable Allocation span is more important than

Effort. If a strategy does not include a certain feature property, then that missing

property is considered less important than all properties included in the strategy.

Thus, the strategy SIH prioritizes innovative features over e.g. small effort features.

Definition of strategic property inversion. For a strategy Sx we define an inversion
of the m-th tuple element to entail a flip of the value of xm to its other value in the

binary domain of that element. For example, if we invert the 2nd tuple element of

the 3-tuple strategy SUHO we get the strategy SULO. We denote an inversion of a

feature property using a bar over the property, e.g. SUH̄O = SULO

Definition of compliance between a strategy and release plan. We represent a can-

didate release plan simply by a list of candidate features C = (f1, f2, ... fn) chosen

from the set of all features fi ∈ F , ordered in some priority order. For a given strat-

egy Sx, we say that Sx and C are compliant with each other if the ordering of

features in C is according to the (partial) ordering of the feature properties in x.

This is denoted using a left-right arrow Sx ↔ C, entailing a predicate ↔ that is

240

International Workshop on Software Product Management (IWSPM)

true if Sx and C are compliant. For example, assume that a candidate release plan C
has E(f1) = Small and E(f2) = Big. Our definition of compliance then entails

that this particular C is not compliant with the strategy SB , as big effort features

comes after small ones, while strategy SB prefers big features over small.

3 Discussion on Applications of INNOREAP

Is INNOREAP a good model? Good in what sense? This remains to be investigated

further. In particular, it would be interesting to study the application of INNOREAP to

the analysis of consequences of release planning strategies, as discussed subsequently.

|FX ∩ FY | |FX ∩ FȲ |

|FX̄ ∩ FY | |FX̄ ∩ FȲ |

Fig. 1. An INNOREAP 4-

quadrant of a feature set F
for the strategy SXY .

Strategy consequence explorations can be made by de-

riving the feature property distribution after sorting a subset

of all candidates so that it is compliant with some strategy

and selecting the first n features as a candidate release. A

feature distribution of a 2-property strategy can be visual-

ized e.g. using a 4-quadrant, as proposed in Figure 1, show-

ing the feature distribution of a feature set in relation to a

certain strategy, where the number of features that has the

properties of all combinations of property inversions. This

show the number of features that are ”best” according the

strategy in the upper left corner, and the number of features

that are ”worst” in the lower right corner.

As an example, a product manager may be interested in

assessing a certain set of features in relation to the follow-

ing complementary strategies: the strategy SB implying a

concentration of effort to a few big features versus the strat-

egy SS for spreading available effort on a larger number of

small features, combined with, e.g. either promoting a high revenue strategy SH or

promoting innovation SI .

If we would construct different release plans that each comply with the aforemen-

tioned strategies respectively, the strategic 4-quadrant can be drawn for both SHB and

SIB . This gives strategic 4-quadrants with feature distributions of the form:
HB HS

LB LS and

IB IS

UB US respectively. Also, a feature selection may be ”optimized” for

some of the previously defined feature set properties to get a top-n feature list in terms

of e.g. maximal gainfulness, maximal innovativeness, minimal effortfulness or minimal

preallocation. Would it not always be best to try to maximize gainfulness (and thus

hopefully maximize profitability as well) by choosing the SH strategy over SI? Not

necessarily, as a next release with a high innovativeness may pave the way for increased

market shares that in the long-run will give higher profitability of future releases.

As feature properties may be inter-dependent, the distribution of features in different

quadrants may be skewed. By depicting several 2-property strategies in different 4-

quadrants, the balancing of different preferences can be discussed among stakeholders

and used as input to product managers’ decision-making, when trying to achieve a total,

pragmatic balance of all aspects that are important for the next and future releases.

241

REFSQ 2012 Workshop Proceedings

4 Conclusion

This paper proposes a model of release planning strategies that aims to give precise

meaning to the concepts of degree of innovation, effort, resource allocation span, and

revenue, that in turn can be assumed to be related to future market shares, cost, lead-

time, and profitability respectively. These are important, inter-related factors when de-

ciding what to invest in before the next release date and what to postpone to future

releases, given limited resources and other constraints. The answer to the question in

the title of this paper is more valuable if feature innovativeness is not only assessed in

isolation, but in trade-offs with other important factors. INNOREAP can be applied to

analyze various combinations of the aforementioned factors, in order to trade-off inno-

vation in feature selection against e.g. concentration on some big features for a coherent

and innovative release theme, minimizing cost or maximizing profitability.

The INNOREAP model is a crude simplification of real-world release planning, by

reducing it to as set of binary choice problems. This simplification of course entails

many limitations. For example, constraints among features are not taken into account.

Other important feature properties may need inclusion, e.g. ability to keep existing cus-

tomers or to attract new ones. Empirical studies are needed to evaluate INNOREAP in

practice, and further studies are needed to understand which simplifications are over-

simplifications, and which simplifications that a product manager appreciate when try-

ing to sketch the big picture of the consequences of release planning decisions.

Acknowledgments. This work is partly funded by www.pie-p.se and www.vinnova.se

References

1. Brinkkemper, S., Ebert, C., Versendaal, J.: Proceedings of the first international workshop on

software product management. In: Software Product Management, 2006. IWSPM ’06. Inter-

national Workshop on. pp. 1 –2 (sept 2006)
2. Crossan, M.M., Apaydin, M.: A multi-dimensional framework of organizational innovation:

A systematic review of the literature. Journal of Management Studies 47(6), 1154 – 1191

(2010)
3. Ebert, C.: The impacts of software product management. Journal of Systems and Software

80(6), 850 – 861 (2007)
4. Regnell, B., Höst, M., Nilsson, F., Bengtsson, H.: A measurement framework for team level

assessment of innovation capability in early requirements engineering. Product-Focused Soft-

ware Process Improvement pp. 71–86 (2009)
5. Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for software products.

In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 287–

308. Springer Berlin Heidelberg (2005)
6. Ruhe, G., Saliu, M.: The art and science of software release planning. Software, IEEE 22(6),

47 – 53 (nov-dec 2005)
7. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A systematic

review on strategic release planning models. Information and Software Technology 52(3), 237

– 248 (2010)
8. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: On the cre-

ation of a reference framework for software product management: Validation and tool support.

2006 International Workshop on Software Product Management (IWSPM’06) pp. 3–12 (2006)

242

International Workshop on Software Product Management (IWSPM)

Benchmarking Bundling Practices in the
Software Industry

Joey van Angeren, Rick van Bommel, Catherine Arupia, and
Sjaak Brinkkemper

Department of Information and Computing Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, the Netherlands

{j.vanangeren,r.a.a.vanbommel,c.arupia,s.brinkkemper}@uu.nl

Abstract. Pricing comprises a crucial part of software product man-
agement. One strategy to follow is bundling; the sale of two or more
products or services as one package. So far, little is known about the use
and acceptance of bundling as a pricing tool within the software indus-
try, especially when it comes to combining products and services into
one package. In this paper we present the results of a small sample sur-
vey conducted with software companies, to both identify the bundling
strategies that are employed and to let these companies benchmark their
strategies with their competitors. In total, twenty-three companies took
part in a web survey. Amongst others, results show that currently 71% of
the companies make use of bundling and the average size of their pack-
ages is equal to five components. The configuration of such a package
proceeds by assembling components around the product or service that
is closest to the core competence of the organization.

Keywords: software product management, software business, product
software, software related serivces, pricing strategy, bundling

1 Introduction

Software product management is becoming ever more important, with many
businesses relying on virtual products (e.g. software products) for their rev-
enue. Software product management is defined as: “the discipline that governs
a software product over its whole life cycle, from its inception to customer de-
livery, in order to generate the biggest possible value to the business” [4]. The
responsibilities within the discipline of SPM cover areas, such as requirements
engineering and release planning. Because SPM involves generating the biggest
possible value to the business, the responsibilities also evolve around price mod-
els and pricing strategies. A proper pricing strategy is of vital importance for a
successful software company [12], and therefore needs more attention.

One of the topics covered within the domain of pricing is product bundling.
Most definitions of bundling originate from either marketing or economics. From
a marketing perspective, Gultinan [7] defines bundling as: “the marketing of two
or more products and/or services in one package at a special price. Stremersch

243

REFSQ 2012 Workshop Proceedings

& Tellis [18] define product bundling from a more generic perspective as: “the
sale of two or more separate products as one package”. While multiple defini-
tions exist, the core of the definition remains the same, being: the practice of
selling two or more products or services as one package. So far, attention for
bundling mainly stemmed from researchers out of the domains of economics and
marketing. The main focus of these researchers has been on different methods
to maximize revenues and profits out of bundling by optimizing the product and
service mix for a package. Also the domain of marketing regards bundling as a
main strategy to attract customers. Examples of these studies are the work by
Bakos & Brynjolfsson [1], or more recently by Gurler, Oztop & Sen [8].

Because of the intensive service flows within the product software industry
the definition of bundling is not entirely satisfying. According to Cusumano [3],
the revenue of a software vendor is comprised out of products (i.e. software and
hardware), maintenance and services. A product software company can, for ex-
ample, supply their customers with a software product that requires hardware.
A software product in this sense is: “a packaged configuration of software com-
ponents or a software-based service, with auxiliary materials, which is released
for and traded in a specific market” [19]. Apart from that, this product may
also require an array of services which are related to these products or even
a mainframe. These services range from implementation services and training
to customer-specific customizations. Furthermore, this system requires mainte-
nance. All these artifacts and services can be an integral part of one package.
On the contrary, a software vendor can also decide to offer the software product
almost free of charge. However, it requires specific implementation services from
the vendor in order to utilize the product. We regard both of these situations
as instances of bundling and therefore we will refer to both of these forms of
delivery as a package. A package in this sense can contain any configuration of
software, maintenance, services and hardware. The artifacts that are part of such
a package, we refer to as components.

As already acknowledged by Penttinen [17] back in 2004, the concept of
bundling is not often studied within the research domains of information sys-
tems, product software and software business in general. When bundling is stud-
ied however, the emphasis is on bundling essentially separate products in one
package. Lehmann & Buxmann [13] name the Adobe Creative Suite as an ex-
ample of this, since it apart from photo editing also contains software to create
PDF files. Due to this lack of attention, this paper directs attention to bundling
of software, services and hardware. Through a small sample benchmark survey
with software vendors, service providers and system integrators we map the in-
fluence bundling has on pricing strategies for components of a package. In order
to achieve this, topics, such as the way in which a package is composed, how
revenue can be attributed to components that comprise this package as well as
bundle strategies and how these findings relate to different company types are
addressed. The findings presented in this paper can be utilized by organizations
within the software industry to benchmark their performance or to embrace
bundling. Out of a researchers perspective, this paper is the first step towards

244

International Workshop on Software Product Management (IWSPM)

filling the void on the edge of the research domains of bundling and product
software business and management.

The remainder of this paper continues with an explanation of the research
question and all relevant sub questions in section two. The third section contains
a process description of the data collection and analysis. Due to the exploratory
nature of this research, results will be presented in the fourth section. We will
elaborate on the gathered data set and we will conceptualize this data. An
analysis and interpretation of these results is presented in section five. Section
six contains a summary of the encountered validity threats as well as statements
about possible generalization of the results presented. In section seven we draw
the main conclusions and provide suggestions for future research.

2 Research Questions

The main research question answered in this paper is as follows: “What is
the influence of bundling on pricing mechanisms for components of
a product package?”. In addition to the main research questions, two sub
questions have been derived.

1. How does the composition of a package relate to the revenue per
component? - A package can consist of any configuration of components.
Because of the variety of different service flows, prominent within the soft-
ware industry, this can lead to a diverse set of configurations. This sub
question will be answered by studying both the composition of the package
of each participant and the revenue each component represents within this
package.

2. What is the relation between the composition of a package and
over- or underpricing individual components? - As noted by Mulhern
& Leone [15], packages can be made more attractive for potential customers
by over- or underpricing certain components. Within the software industry,
this dynamic is ever more present. By answering this sub question, we will
identify the relation between the composition of a package and over- or
underpricing. We will also identify patterns within this relation.

Both sub questions will be answered in section four and five. The answers
to the sub questions form the basis to provide an answer to the main research
question. Contextual characteristics, such as the company type, industry type
and market type are used to provide a further classification in answering all the
research questions.

3 Research Design

For performing this research, we have chosen to conduct a benchmark survey,
since for now few research has been performed on the subject of bundling within
the software industry. Because of this, a broad input in the form of a web survey

245

REFSQ 2012 Workshop Proceedings

suits the research objectives better than a more in-depth method, such as a case
study [2]. Furthermore, this way we enable software companies to benchmark
their performance, by delivering a benchmark report that compares their results
to the entire dataset. The procedures employed for this research are similar to
the ones used by Jansen, Brinkkempter & Helms [11].

Fig. 1. Conceptual Model

As shown in figure 1, the core of the research involves investigating relations
between the dependent variable bundling and the independent variable pricing
strategy. However, various variables can have a moderating effect on this rela-
tion. These variables include the market and business environment. The variable
market environment is measured by the perceived competitiveness of the mar-
ket, market share and loyalty of the clients. The variable business environment is
measured by the type of company and its dimensions. This research, for a large
part, focused on quantitative data and for a smaller part on the amount of qual-
itative data that has been gathered. The qualitative part of this research aids in
the effort of gaining new insights in rationale, while the quantitative part in this
research intends to identify patterns and trends. Furthermore, basic quantitative
methods were employed to prove or disprove the following hypotheses:

– H1: The component being the core competence of the organiza-
tion is the component that represents the highest annual revenue
share. Companies can focus on their core competences when doing business.
Packages are then shaped around one main component, the component that
the organization specializes in, the heart of the package and thus comprising
the largest share.

– H2: Software components as part of a package are purposely un-
derpriced to stimulate sales of the total package. The sale of software
stimulates the sale of services within the package. Companies provide their
software either at a lower price or for free to benefit the sale of services. The
underlying assumption behind this is that it is easier for a potential cus-
tomer to valuate the average market price for software and hardware. Doing
this, the company attemps to benefit from recurring fees out of the inten-
sive maintenance and support flows that are characterizing for the software
industry [10].

246

International Workshop on Software Product Management (IWSPM)

3.1 Survey Design

The survey has been constructed out of three parts. Two parts of the survey
refer to the measurement of factors related to the moderating variables; busi-
ness environment and market environment. The other part aimed to elicitate
all knowledge about bundling (i.e. the composition of a bundle) and pricing
strategies (i.e. over- or underpricing). Each part consisted of around six to nine
questions. The survey contained both open and closed questions and also in-
cluded a number of multiple-choice questions and statements to be answered on
a five point Likert scale [14].

Most multiple choice questions were employed to identify the decisions made
with regard to pricing and package composition (e.g. the components that a bun-
dle consists of or the revenue share that each of these components represents).
Accompanying open questions provide insight into the rationale behind pricing
strategies for components of a package. Most information related to the moder-
ating variables is elicitated by employing categorized multiple choice questions
as well as closed questions. At the end of the survey some statements on the basis
of a Likert scale were included to measure customer loyalty and the attitude of
companies with regard to bundling.

With regard to construct validity, findings from previous research [3,13,15]
did form the basis for this survey. To further enhance construct and internal
validity, the survey does adhere to the survey heuristics as defined by Fowler
[5]. Furthermore, a pilot survey has been employed. Two participants have been
asked to complete the survey to ensure the questions in the survey are unambigu-
ous and result in the intended type of answers. These two participants have been
excluded from further participation in this research. With the received feedback
from these participants, approximately 5% of the survey was modified.

3.2 Data Collection and Sample Selection

To be able to conduct the survey, a digital survey environment has been set up
with the open source software LimeSurvey, which includes Extensible Markup
Language (XML) export functions in order to create a small bridge with other
applications. The application that is connected with LimeSurvey is a self-written
Hypertext Preprocessor (PHP) script that uses the open source library fPDF to
generate the Portable Document Format (PDF) feedback report.

By means of a benchmark survey, potential participants found a strong in-
centive to participate in this research. A representative from a company that did
complete the questionnaire and did submit his or her email address has received
a simple benchmark PDF report. In this benchmark report, the scores of their
company are compared with the scores of the total dataset.

Software vendors, system integrators and service providers have been con-
tacted to take part in this survey. Desired respondents from a company were
employees residing from management, sales or software product management
functions. There were no restrictions in the geographic location of potential par-
ticipants. Start-ups and companies employing less than five people were excluded

247

REFSQ 2012 Workshop Proceedings

from the targeted participants. Another requirement was that their presence
within the product software industry has to be significant and thus one of their
main business functions.

Potential participants have been contacted through direct and indirect chan-
nels. Around twenty companies have been contacted directly through email and
have been invited to fill in the questionnaire. Furthermore, the digital survey
has been spread by means of professional network portals. Companies that are
active within relevant groups on social networks have been invited to take part
in this survey. The data gathering process took place for three weeks, starting
in the middle of December until the end of the first week of January.

Because of the limited timeframe in which this research took place, the de-
sired number of respondents is relatively low. To analyze results on a percentage
scale we did at least need ten to fifteen respondents. In case of more than thirty
responses, analysis could be more statistical and elaborative, however, to achieve
a higher level of generalizability the number of respondents has to be higher than
the indicated figures.

3.3 Data Analysis

For the purpose of data analysis both a qualitative and quantitative analysis
have been fulfilled. For the qualitative analysis, rationales of respondents about
over- or underpricing decisions and package composition were the data sources.
This data, in term provices for a high-level analysis of the managerial decisions
that have been made during the creation packages. Accordingly, these data are
employed for conceptualization purposes, brief classification and are compared
with findings described in previous research.

For the second part of the analysis, quantitative methods have been em-
ployed. This is done by a percentagewise comparison. This comparison analysis
pinpoints variances that occur in groups between contextual information (e.g.
core business, core industry) package configuration choices and resulting rev-
enue. The latter is done through a pattern analysis. The contextual information
encompasses two focus fields, namely the company and market information. Be-
cause of the relatively small sample size, we refrain from performing a more
in-depth stastical analysis.

4 Results

In total, twenty-three product managers, CEOs, pricing managers or marketing
and sales representatives did respond to the survey. Out of these twenty-three
respondents, six were excluded from the final dataset. Their responses were either
incomplete or they were not part of the target group. The final dataset consists of
seventeen entries, 74% of the total number of respondents in the initial dataset.

248

International Workshop on Software Product Management (IWSPM)

4.1 Respondents

The majority of participants that completed the survey come from the Nether-
lands. A total of ten companies (59%) indicates their headquarters are located
in the Netherlands. Three companies (17%) originate from the USA, two (12%)
from the United Kingdom, one (6%) from Australia and one (6%) from France.

Because of targeting multiple company types we did ask participants to in-
dicate the type of company that characterizes their organization the best. By
far, the most companies are software vendors, followed by service providers. We
did furthermore ask all participants to indicate what their core business is. The
majority of respondents stem from the business process application segment, fo-
cusing on the development, integration or service provision of or for enterprise
resource planning and business productivity applications. Figure 2 provides a full
overview of how the respondents have been spread over the different categories.

Fig. 2. Distribution of Respondents

Out of the seventeen respondents, twelve companies (71%) indicate to use
bundling. The companies that do not employ bundling solely belong to the small-
est company size. This corresponds with the maturity model for evolutionary
growth of a software firm as proposed by Nambisan [16]. According to Nam-
bisan, small companies are in a “start-up phase. Within this phase, the size of
the product and service portfolio is limited, as well as the relative size of the

249

REFSQ 2012 Workshop Proceedings

individual offerings, since they focus on their core asset. In the case of a software
vendor, this focus lies on software development and testing. As a consequence,
bundling becomes less relevant because the firm lacks resources to even compose
a package. Even though the small companies comprise 59% of the total dataset,
the majority of companies indicates to use bundling, we can therefore conclude
that bundling is a popular approach within the software industry.

This conclusion is supported by the overall opinion the respondents have
about bundling. Even though not all the respondents are currently using bundling,
when asked only 14% of them indicates to not see much added-value in such a
mechanism to stimulate sales of packages. Measured on a five-point Likert scale
the average satisfaction equals a score of 3.57.

4.2 Package Composition

An important aspect of bundling is the actual composition of a package. We
have asked the respondents to indicate which components together comprise
their most prominent (e.g., most popular or best selling) package. The alterna-
tives they could choose from have been derived from the notion of Cusumano [3]
that the revenue of a software firm comes from products, maintenance and addi-
tional services. In correspondence, we did ask the respondents to indicate what
percentage of total package revenue, each of these components represented. For
this we employed the following categories; hardware, software products, customer
specific customizations, implementation, maintenance, training and consultancy.
Figure 3 provides an overview of the answers provided by the respondents.

As shown in figure 3, most respondents comprise their packages out of a wide
array of products and services, providing for a strong diversification of offerings.
Just two companies include respectively two or three components into their main
package. Two other companies indicate that their bundle even consists of six or
seven elements. On rounded average, the number of components in a package is
equal to five.

Because of the large number of components within the package, not all cus-
tomers will buy the entire bundle; rather they decide to take part of this com-
position. Hitt & Chen [9] refer to this as customized bundling. This variant of
bundling appears to be most applicable for software companies, since it offers
higher flexibility compared to pure bundling or mixed bundling and therefore
facilitates the creation of large diverse packages.

With regard to this package composition, software components and accom-
panying implementation services are ever present within the described packages.
This also goes for the service providers and system integrators, who, in corre-
spondence with their business model, diversificate their total offering by reselling
an existing software product, accompanied by implementation services and cus-
tomer specific customizations. This is supported by the corresponding revenue
shares, where only a small percentage originates from software. Furthermore,
most companies indicate to benefit from recurring fees. Benefiting from intense
service and maintenance flows they accompany their software products with
specific implementation, maintenance and training.

250

International Workshop on Software Product Management (IWSPM)

Fig. 3. Components included by software companies in total package

Physical goods, such as hardware and mainframes, are not included by the
majority of the companies. Only two software vendors indicate to offer hardware
components along with their software and services. This can either be caused
by the large number of smaller companies that did fill out the questionnaire, or
by the advent of Software as a Service. Also one system integrator indicates to
resell hardware components.

4.3 Pricing Mechanisms

Companies were asked whether they under- or overprice (e.g. related to the
market-price) software or service components. For software components, 17%
indicates to overprice their software, 17% indicates to underprice while the rest
conforms to a market-price. For services, only 8% indicates to underprice and
also 8% indicates to overprice. Hardware components are also overpriced by 8%
of the respondents. In total, five out of twelve companies indicate to use flexible
pricing for individual components, the other seven companies indicate to not
employ any flexible pricing mechanism. The firms that indicate to not employ
flexible pricing mechanisms belong to the companies with a market share higher
than the market share of companies employing these mechanisms. This supports
the finding from Gallaugher & Wang [6] that there is a relationship between
market share and pricing strategies. However, it can also be the case that these
companies employ price bundling, a form of bundling in which the price of the
total package is subject of fluctuation instead of varying prices of individual
components.

251

REFSQ 2012 Workshop Proceedings

The rationales for the use of flexible pricing strategies for different compo-
nents vary per company. When underpricing, companies indicate to do this to
either increase market penetration or to stimulate tie-sales. Companies that in-
dicate to be active in highly competitive markets underprice part of their main
components in order to compensate for this on the long-term through recurring
fees, flowing in through long-term service contracts. Tie-sales are also employed
to benefit from those recurring fees.

With regard to overpricing, it is found to be most applicable for the main
component within the package or the core competence of the company. Individual
value propositions and the relative position of a product in relation to the products
of competitors are considered to be the main motives for overpricing.

5 Analysis

H1: The component being the core competence of the organization is
the component that represents the highest annual revenue share.

Because of the relative small sample size we chose to apply and test this
hypothesis with the largest company group within this dataset; the independent
software vendors. In total, seven software vendors (e.g. the ones that did indi-
cate to employ bundling) have been selected to test this hypothesis. To provide
a detailed insight into the bundle composition decisions of software vendors, we
created a table 1. For every component, this table describes how many software
vendors did indicate to include this respective component in their offering. Fur-
thermore, the respondents did provide an indication of the revenue contribution
each of these componentns represents within the total package on an annual
basis. To put these percentages into perspective, we computed the relative con-
tribution to the total revenue for each of the components.

Table 1. Average distribution of revenue over package components as indicated by
seven software vendors

Component # times included in package Contribution to revenue

Hardware 2 22,5%

Software product 7 41,50%

Customizations 2 2,5%

Implementation 7 19%

Maintenance 7 22%

Training 7 6%

Consultancy 4 9%

As can be noted from table 1, the majority of software vendors create pack-
ages that consist of five to seven different components. With a weighted average
contribution of 41,50% to the total revenue, software comprises by far the largest

252

International Workshop on Software Product Management (IWSPM)

revenue share of the entire bundles offered. In the context of the hypothesis;
software vendors surround their core competence, the software product, with
an array of accompanying complementary services. This finding supports the
formulated hypothesis.

The most prominent supporting components within the packages are imple-
mentation and maintenance. This corresponds with the revenue destribution for
software firms as described by Cusumano [3]. Consultancy services and training
comprise a very small part of the revenue per package. This supports the notion
that these services are not very prominent within the package; they rather are
employed for package completion or diversification. Another explanation could
be that the majority of this task is being taken care of by partners. Doing so, the
company can focus on its core competence, which lies in software development,
assembly or implementation and maintenance. Furthermore, these additional
services can be subject to underpricing, either to lower the costs of the total
package or to make the package more attractive for customers.

The previously provided spreading of respondents in figure 2 reveals that the
average number of employees for most companies is predominantly between one
and ten employees. Accordingly, this indicates that there are not much resources
left for dedicated support and implementation services. This either correlates
with the employment of strategic partners to provide training and consultancy
to benefit from an increased focus on software development or the “start-up”
phase as elaborated on previously.

H2: Software components as part of a package are purposely un-
derpriced to stimulate sales of the total package.

This hypothesis is tested by looking at the over- and underpricing decisions
made by participants alongside with the rationale they did provide for this. As
mentioned earlier, 20% indicates to purposely underprice their software product,
while 20% indicates to overprice and the remainder does conform itself to market-
price or has an internal view on pricing (e.g., they solely add a margin on top
of their costs to determine the cost price). For services, only 10% indicates to
underprice while also 10% indicates to overprice.

Based on these percentages and the small sample size, we cannot conclude
whether there is a significant relation, if at all, between underpricing and the
increased sale of accompanying components or the package as a whole. It only
indicates that software companies are eager to employ bundling to benefit from
flexible pricing mechanisms for individual components. This supports the find-
ings from Mulhern & Leone [15] who noted that packages can be made more
attractive by fluctuating prices of individual components. However, according to
the responses, this decision is not related to the number of compositions that
comprise the bundle as a whole.

The provided reasons for underpricing software, however, correspond to the
line of thought behind this hypothesis. The very open and direct way in which
the questions were answered accounted for some clear statements. In two par-
ticular cases underpricing was applied with a view on benefiting from recurring
revenue. According to the respondents, these recurring revenues from mainte-

253

REFSQ 2012 Workshop Proceedings

nance and service flows make up for revenue losses that are a consequence of
underpricing, while these flows also provide for a higher revenue on a longer
term. Furthermore, underpricing is also indicated to be attractive when aiming
for market share. Underpricing is, especially in highly competitive markets or
project bids, considered to be a good method.

These rationales are in correspondence with the hypothesis. This, however,
is still not enough to prove the hypothesis. A large sample survey needs to be
employed to enable in-depth statistical analysis. This statistical analysis needs
to be employed to either prove or disprove this hypothesis, by drawing significant
relationships between different variables.

6 Discussion

In this paper we presented the research findings based on data gathered through
a small sample benchmark survey. To ensure construct validity, this survey has
been designed in correspondence with findings from scientific literature. To en-
hance internal validity, we did commit the survey to the heuristics for an unam-
biguous survey design as defined by Fowler [5]. Furthermore, we did use two test
companies to verify whether the questions were interpreted in the way they were
meant to be. Participation in this survey proceeded anonymously to minimize
the influence of personal biases of company representatives. Even though these
measures have been taken, we cannot completely exclude that participants are
biased, especially since pricing strategies are considered to be highly confidential.

We did invite software companies to take part in this survey through both
direct and indirect channels. A relatively small number of companies has been
invited by sending them an email, the majority however, did get access to the
web survey by means of professional networking portal spreading. Because of
spreading the survey by means of professional network portals, it is difficult to
indicate the exact response rate. After removing the incomplete responses and
responses from companies outside of the target group from the final dataset the
total number of respondents is considered to be relatively small, even though the
participants were offered an additional incentive for participating in the form of
a benchmark report. In relation to this, the external validity, and therefore the
generalizability of the results presented, is considered to be limited. Especially
since, according to estimations by Statistics Netherlands, the number of product
software vendors is estimated to be 2200.

7 Conclusion

In this paper we presented the results of a small sample survey, employed to
investigate the applicability of bundling in the software industry. This because
so far, few empirical studies have been conducted to address the bundling of
products and services in the product software industry and because existing
theories from marketing and economics are not satisfying for this industry. In

254

International Workshop on Software Product Management (IWSPM)

a relative short period of time, twenty-three companies took part in a web sur-
vey. Software vendors, system integrators and service providers were invited to
participate in this research. In return for their participation they did receive a
customized benchmark report.

Results show that 71% of the companies currently employ bundling as a pric-
ing, delivery and marketing mechanism. Companies that do not employ bundling
are small software vendors because their product and service portfolio is too
small to implement bunding. The average package consists of five different com-
ponents, meaning that diversification is considered to be important amongst the
companies. This also supports the notion that customized bundling is the most
applicable form of bundling for the software industry, since it aids in achieving
a higher degree of flexibility with regard to package composition. In total, five
out of twelve companies indicate to over- or underprice individual components
within their package, meaning that bundling provides for more flexibility in pric-
ing mechanisms. The respondents furthermore indicate to regard bundling as a
valuable approach to product and service pricing.

A study of the composition of packages offered by software vendors shows
that they construct a packages around their core competence; the software prod-
uct. With an average contribution to the total package revenue of 41,50% the
software comprises the largest part of the total package. A large number of addi-
tional services and maintenance, directly related to the product is then added to
diversify the offering as a whole and to benefit from recurring fees. These recur-
ring fees and market penetration play a vital role in over- or undepricing specific
components. Two companies did indicate to underprice software to benefit from
recurring fees out of maintenance and services on the long-term while three other
companies indicate to underprice to increase the degree of market penetration.
Overpricing occurs less often and is justified by individual value propositions.

The findings presented in this paper provide a first step towards expanding
the body of empirical knowledge and data on bundling in the software indus-
try. Since the number of respondents was limited, more research needs to be
addressed to generalize the presented results to a larger scale. To enable re-
searchers in doing so, the conceptual model that we presented in this paper can
serve as a starting point. Since a coarse-grained conceptual model similar to the
one we did present in this paper only suffices for smaller samples that do not
involve in-depth statistical analysis, some adjustments have to be made. Larger
samples also need to be addressed to perform in-depth statistical analysis in or-
der to identify significant relationships between bundle composition and pricing
mechanisms.

References

1. Bakos, Y., Brynjolfsson, E.: Bundling information goods: Pricing, profits and effi-
ciency. Management Science 45(12), 1613–1630 (1999)

2. Blumberg, B., Cooper, D.R., Schindler, P.: Business Research Models. McGraw-
Hill (2011)

255

REFSQ 2012 Workshop Proceedings

3. Cusumano, M.: The changing labyrinth of software pricing. Communications of the
ACM 50(7), 19–22 (2007)

4. Ebert, C.: Software product management. CROSSTALK The Journal of Defense
Software Engineering Process Replication 22(1), 15–19 (2009)

5. Fowler, F.: Improving Survey Questions: Design and Evaluation. Sage Publications
(1995)

6. Gallaugher, J., Wang, Y.: Understanding network effects in software markets: Ev-
idence from web server pricing. MIS Quarterly 26(4), 303–327 (2002)

7. Guiltinan, J.: The price bundling of services: A normative framework. Journal of
Marketing 51(4), 74–85 (1987)

8. Gurler, U., Oztop, S., Sen, A.: Optimal bundle formation and pricing of two prod-
ucts with limited stock. International Journal of Production Economics 118(2),
442–462 (2009)

9. Hitt, L., Chen, P.: Bundling with customer self-selection: a simple approach to
bundling low marginal cost goods. Management Science 51(10), 1481–1493 (2005)

10. Jansen, S., Brinkkemper, S., Finkelstein, A.: Component assembly mechanisms and
relationship intimacy in a software supply network. In: 15th International Annual
EurOMA Conference, Special Interest Session on Software Supply Chains (2008)

11. Jansen, S., brinkkemper, S., Hemls, R.: Benchmarking the customer configuration
updating practices of product software vendors. In: Proceedings of the Seventh in-
ternational Conference on Composition-Based Software Systems. pp. 82–91 (2008)

12. Kittlaus, H., Clough, P.: Software Product Management and Pricing: Key Success
Factors for Software Organizations. Springer-Verlag (2009)

13. Lehmann, S., Buxmann, P.: Pricing strategies of software vendors. Business and
Information Systems Engineering 1(6), 452–462 (2010)

14. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology
140, 44–53 (1932)

15. Mulhern, F., Leone, R.: Implicit price bundling of retail products: A multiproduct
approach to maximizing story profitability. Journal of Marketing 55(10), 63–76
(1991)

16. Nambisan, S.: Software firm evolution and innovationorientation. Journal of Engi-
neering and Technology Management 19(2), 141–165 (2002)

17. Penttinen, E.: Bundling of information goods - past, present and future. Sprouts:
Working Papers on Information Systems 4(24), 1–26 (2004)

18. Stremersch, S., Tellis, G.J.: Strategic bundling of products and prices: A new syn-
thesis for marketing. Journal of Marketing 66(1), 55–72 (2002)

19. Xu, L., Brinkkemper, S.: Concepts of product software. European Journal of In-
formation Systems 16(5), 531–541 (2007)

256

International Workshop on Software Product Management (IWSPM)

�

�

�

�

�

�

Part�II�

REFSQ�2012�Empirical�Track�Proceedings�

257

�

258

7�Preface�

Editors� �

Joerg�Doerr�
Fraunhofer�IESE,�Germany,�joerg.doerr@iese.fraunhofer.de�

Norbert�Seyff�
University�of�Zurich,�Switzerland,�seyff@ifi.uzh.ch�

�

Daniel�Berry�
University�of�Waterloo,�Canada,�dberry@uwaterloo.ca�

�

�

REFSQ 2012 Empirical Track Proceedings

259

�

260

Empirical Track

Joerg Doerra, Norbert Seyffb, Daniel Berryc

aFraunhofer IESE, Germany; bUniversity of Zurich, Switzerland;
cUniversity of Waterloo, Canada

After the success of last year, we were given the opportunity to repeat the
Empirical Track in 2012 and to expand it. Therefore, we issued a call for the
following kinds of submissions:
• Alive Empirical Study: a controlled experiment, requiring no more than 90 minutes,

that involves all REFSQ participants who want to participate,
• Online Questionnaire: an online questionnaire (survey), designed to require no more

than 30 minutes, that is promoted at REFSQ and that can be filled out by all
interested REFSQ participants, in their spare time at the conference, and

• Empirical Research Fair Proposal: an empirical study that a researcher would like to
conduct in an industrial setting or vice versa.

Overall we received fifteen high quality submissions, of which we selected eleven to
be presented during the Empirical Track: one Alive Empirical Study, three Online
Questionnaires and seven posters in the Empirical Fair.

1 Alive Empirical Study

The discussion at recent REFSQs have confirmed the strong need for empirical
validation of the effectiveness for our Requirements Engineering (RE) methods, but
the literature to date, including that of REFSQ, could show more of this validation.
This lack is assumed to be at least partly due to the difficulty of finding and
persuading the participation of a sufficient number of suitable experimental subjects.
Therefore, REFSQ 2012 issued a call that offers an opportunity to conduct an
empirical study during the conference itself. The goals of this opportunity, besides
that of permitting to conduct the experiment, are to raise awareness for the necessity
and benefits of empirical studies and to show that participating in them is not
dangerous to one’s health. Furthermore, we want to bring together the community of
researchers and practitioners who are interested in empirical studies. Therefore, we
selected the experiment titled Do Stakeholders Understand Feature Descriptions?,
organised by Rumyana Proynova and Barbara Paech to be conducted at REFSQ 2012.
This experiment aims to show how well a stakeholder can understand feature
descriptions, and whether different forms of feature descriptions lead to different
levels of understanding.

261

REFSQ 2012 Empirical Track Proceedings

2 Online Questionnaires:

Online Questionnaires were a new kind of empirical study in the REFSQ Empirical
Track, inspired by submissions we received in 2011. An online questionnaire (survey)
is designed to be filled out by all interested REFSQ participants, in their spare time at
the conference, during breaks, etc. It should require no more than 30 minutes in order
to participate. The following online questionnaires were selected for REFSQ 2012:

• A Survey on Empirical Requirements Engineering Research Practices by Nelly
Condori-Fernandez, Maya Daneva, and Roel Wieringa

• A Survey on Requirements Engineering for Variability-intensive Software Systems
by Christian Manteuffel, Matthias Galster, and Paris Avgeriou

• Requirements Engineering Techniques and Methods: An Online Questionnaire
determining actual use in industry by Richard Berntsson Svensson, Tony Gorschek:

The first two surveys received strong feedback by the REFSQ participants and the
results are published in these proceedings. Because the last survey was aimed at a
much smaller potential target group, only a few participants responded; so a
description of the results in these proceedings was not possible.

3 Empirical Research Fair:

It is clearly understood in the RE community that case studies of industry projects
are critical for our in-depth understanding of both: (a) the phenomena occurring in
projects, processes, systems, and services and (b) the impact of our RE methods on
the quality, cost, and deliverability of systems. Therefore, in the Empirical Fair,
practitioners were asked to propose studies that their organizations would like to have
conducted, and researchers were asked to propose studies that they would like to
conduct in industry. The Empirical Fair was a meeting point to match the demand and
supply of empirical studies among researchers and practitioners. To encourage
industry participation, the format of this session was a match-making session in which
the authors of the accepted proposals present posters on their intended case studies
and the audience viewed them and entered a good discussion on the studies goals,
benefits, and procedure. The following seven proposals were presented on posters
during the fair:

• Tracing Requirements Interdependencies in Agile Teams by Indira Nurdiani,
Samuel Fricker, and Jürgen Börstler

• What do you expect from Requirements Specifications? An Empirical Investigation
of Information Needs by Anne Gross

• Applying Creativity Techniques to Requirements Elicitation: Defining an Enhanced
EPMCreate by Luisa Mich, Daniel Berry, and Victoria Sakhnini

• Supporting Client-Developer Feedback Loops in Agile Requirements Engineering
by means of a Mobile Requirements Engineering Tool by Maya Daneva, Nelly
Condori-Fernandez, and Norbert Seyff

262

Empirical Track Preface

• Using E-mails and Phone Calls to Resolve Requirements Engineering Issues: Which
Works Best and for Which Type of Issue? by Maya Daneva

• Patterns of Requirements-Related Communication by Eric Knauss and Daniela
Damian

• Requirements Elicitation Driven by End-Users by Alessia Knauss and Daniela
Damian

Acknowledgements

We would like to thank Daniela Damian and Bjorn Regnell, the Program
Committee Co-Chairs of REFSQ 2012, for giving us the opportunity to perform and
extend the Empirical Track at REFSQ 2012. We sincerely thank all the authors of the
empirical track for their contributions and their hard work in preparing, conducting
and analyzing the empirical studies. Everybody that is involved in empirical studies
knows that it is a lot of work. Furthermore, we would like to thank the members of the
program committee of the Empirical Track for their valuable reviews that made it
possible to select high quality contributions. Moreover, empirical studies cannot be
successful without active participations of people in the studies. We would like to
express our sincere thanks to all REFSQ participants who participated enthusiastically
in the Alive Empirical Study, in the Online Questionnaires, and in the lively
discussions at the Empirical Fair. This participation made the Empirical Track a real
success.

263

REFSQ 2012 Empirical Track Proceedings

Programm Committee

Ian Alexander Scenario Plus, UK
Claudia P. Ayala Technical University of Catalunya, Spain
Brian Berenbach Siemens AG, USA
Maya Daneva University of Twente, The Netherlands
Deepak Dhungana Siemens AG, Austria
Christof Ebert Vector, Germany
Samuel Fricker Blekinge Institute of Technology, Sweden
Thomas Gehrke Siemens Rail Automation, Germany
Martin Herget Siemens Corporate Technology, Germany
Andrea Herrmann Infoman AG, Germany
Frank Houdek Daimler AG, Germany
James Hulgan Seilevel Inc, USA
Andreas Jedlitschka Fraunhofer IESE, Germany
Natalia Juristo Universidad Politécnica de Madrid, Spain
Søren Lauesen IT-University of Copenhagen, Denmark
Nazim H. Madhavji University of Western Ontario, Canada
Luisa Mich University of Trento, Italy
Anne Persson University of Skövde, Sweden
Gil Regev EPFL and Itecor, Switzerland
Björn Regnell Lund University, Sweden
Mehrdad Sabetzadeh Simula Research Laboratory, Norway
Victoria Sakhnini University of Waterloo, Canada
Camille Salinesi Univ. Paris 1 – Panthéon Sorbonne, France
Erik Simmons Intel, USA
Karen Smiley ABB Corporation, USA
Roel Wieringa University of Twente, Netherlands

Empirical Track Preface

264

8�Alive�Experiment�

Alive�Experiment�Programme�

� Do�Stakeholders�Understand�Feature�Descriptions?�A�Live�Experiment.��
Rumyana�Proynova,�and�Barbara�Paech�

266

�

REFSQ 2012 Empirical Track Proceedings

265

Do Stakeholders Understand Feature
Descriptions? A Live Experiment.

Rumyana Proynova and Barbara Paech

Software Engineering group, Institute for Computer Science, University of
Heidelberg, Germany

{proynova, paech}@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Requirements engineers need feed-
back from stakeholders on planned system features. The simplest way
is to present feature descriptions to the stakeholders and ask for their
opinion. [Problem/question] The feedback is only valid if the stakehold-
ers’ conception of the features represents the actual features reasonably
well. Due to the highly abstract nature of software, it is possible that
there is a mismatch between the stakeholders’ idea of the feature descrip-
tion and the actual feature the software engineers intend to implement.
[Method/results] We conducted a live experiment during the RefsQ 2012
conference. We used a questionnaire to measure the mismatch between
the participants’ understanding and liking of a list of software features
and the implementation of these features, shown as a screencast of a
system prototype. We found a correlation between the degree of un-
derstanding of a feature and the liking of that feature. There were no
significant differences between features presented in different formats.
[Contribution] This experiment shows first insights into the factors which
contribute to a stakeholder’s understanding of a feature description, and
to his/her satisfaction with a software which contains these features.

1 Introduction

It is not feasible to involve end users in requirements elicitation in all projects,
even though this could lead to higher quality requirements. Factors like the un-
availability of end users (for example in global software development projects or
off-the-shelf software products with no designated end users) or limited budget
and resources, as well as company culture, can dictate that the requirements for
the software are derived from other sources. In order to ensure that these require-
ments are aligned with the needs of the end users, the requirements engineers
can let the users validate the requirements.

The constraints which preclude resource-intensive elicitation techniques are
likely to also preclude similarly resource-intensive validation techniques. A tech-
nique, which produces adequate results but requires a comparably low level of
effort, can enable early validation in projects where currently end users are not
involved until the very late stages of the project such as testing or even roll-out
of a completed product. Our research focusses on defining such a technique. The

266

Alive Experiment

experiment described in this article is part of the research needed for the creation
of this technique.

The technique is based on the well-known marketing concept of using a ques-
tionnaire to measure customers’ expected satisfaction with product features [11].
Such a questionnaire lists a number of features and the prospective customer
indicates his or her expected satisfaction on a Likert scale. While marketing
literature provides research on using this technique, it cannot be used for soft-
ware products without substantial extensions. The abstract nature of software
and the often intricate dependencies between features make it difficult for the
questionnaire respondent to give meaningful ratings for the individual features.

While the questionnaire technique has some distinct advantages, such as mak-
ing efficient use of the time of the requirements professional (as there are no sep-
arate interviews with each user) and delivering quantitative data, it also has its
drawbacks. The communication between end users and requirements engineers
is very limited, and there is no convenient channel for inquiries, clarifications
and discussion. All information a user gets about a feature is its description. If
users misunderstand a feature description, they may approve a feature they do
not need, or declare that they need a feature which is in fact useless. They may
also have ideas about how to improve the features, but may not inform the re-
quirements engineers, because they are unsure about the proper communication
channel.

For the communication between the requirements engineer and the end user
to function properly, it is important that the requirements engineer asks the
right questions, the users understand them in the way they were intended, and
answer truthfully. This article describes an experiment which we conducted in
order to gain more insight into the first two points. Our experiment does not
address the possibility of users intentionally giving wrong answers.

In the next section, we describe research related to our experiment. In sec-
tion 3, we describe how we designed our questionnaire and how we conducted
the experiment itself. Section 4 describes our hypotheses, our results, and some
explorative conclusions we made in addition to the predefined hypotheses. The
last section presents our intended future work on this topic.

2 Related Work

Our experiment uses a questionnaire for measuring the users’ satisfaction with
a product. There are several techniques in marketing for similar types of anal-
ysis. Prominent ones are concept testing [10], conjoint analysis [7], importance
performance analysis [9] and SERVQUAL [1].

None of these methods can be used directly with software features. Con-
cept testing presumes that a customer is able to make a buying decision based
on an advertisement presented on a magazine page. This is useful for products
like toothpaste, which only have a few simple features, but is not feasible for
software products. Conjoint analysis requires a customer to make pairwise com-
parisons between each possible level of many factors, for example a product can

267

REFSQ 2012 Empirical Track Proceedings

have the factors product warranty (levels: 1 year, 2 years) and support options
(levels: telephone hotline, online ticket submission) and the customer has to
rank all four possible combinations. As the number of comparisons to be made
grows exponentially with the number of factors present, it is not suitable for
a products with multiple features. Importance-performance analysis needs eas-
ily quantifiable features, for example fizziness for a soda. SERVQUAL includes
a hierarchical set of service qualities, which can not be mapped to a software
product without changes. All four of these techniques assume that the name of
a feature conveys enough information about it to be perfectly understandable
for a customer, and the studies which use these methods are done on products
with simple, well-known features where understandability is not a problem.

Our research is based on software features. Software features are an impor-
tant part of how users understand software. They are often used in software
specifications, especially in the context of software product lines. [2], [12]. Other
types of specification can often be broken down into individual features, the way
we do this in the experiment described here - we produce our features from a
software specification written as user tasks [8] and user stories [3].

3 Experiment Design

The experiment was conducted during the empirical track of the RefsQ 2012
conference, with 56 conference visitors participating. Each participant received
a questionnaire and was asked to answer the first part of it. This part contained
software feature descriptions and questions about them. Then the participants
were shown a screencast of a software application implementing the features from
the first part, and had to answer questions about the feature implementation.

For the experiment, we created a software requirements specification and
a software prototype implementing the specification. We chose to implement a
personal finance software product for managing receipts. This choice had several
advantages. First, this application could be made simple enough to cover the
complete specification of functional requirements in the limited time available for
the experiment. Second, this class of software product is not especially common,
and we expected most of the participants to not have made experience with
similar software products before. This reduced the chance of preconceptions
formed through contact with similar software products to skew the results. Third,
using this software does not require any special knowledge. Had we chosen a
software supporting a process which is only performed in certain professional
fields or hobbies, we would have had to control for the participants’ experience
in these fields or hobbies.

We used the features from our requirements specification for the features
description in the questionnaire. We recorded a screencast of the first author
using the software, and used this recording for the experiment. The questions in
the questionnaire were derived from our research goals.

268

Alive Experiment

3.1 Research Goals

The purpose of this experiment was explorative research. We wanted to get first
insights into how users understand feature descriptions and how a requirements
engineer can create a questionnaire which reflects the true future satisfaction
of an end user with given software features. Such an instrument can never be
perfectly accurate, but we want to achieve a degree of accuracy high enough for
it to be used in decision-making about which features should be implemented in
a software product.

We had three main research goals. We wanted to a) understand to what
degree an end user’s satisfaction with an implemented feature correlates with
a set of factors we assumed are connected to satisfaction, most importantly to
what degree self-predicted satisfaction correlates with actual satisfaction; to b
) to find further factors, beside the ones we assumed in the previous goal, which
could possibly play a role in self-reported expected satisfaction; and to c) to
test whether different feature presentation formats influence the understanding
of features.

Correlation of end user satisfaction with proposed factors While mar-
keting theory often works with complicated concepts to describe satisfaction, a
questionnaire study has to use simple, universally understood concepts in a ques-
tionnaire, else it risks getting incomparable results due to a confusion of what is
being asked. For this experiment, we chose one of the simplest concepts possible:
liking. As we are interested not only in knowing self-reported liking, but also in
how accurate the answers are, we also included questions about the understand-
ing of what a feature is about. A misunderstood feature will lead to answers
based on a false conception of the feature and therefore reduce the usefulness of
a questionnaire. We asked about the liking and understanding both before and
after the participants saw the feature implemented in a software demonstration.
We formulated multiple hypotheses about the possible relation between how well
participants believed they have understood a feature before and after implemen-
tation, and how much they liked it before and after implementation. Below is a
list of these hypotheses, with a possible explanation for each hypothesis given in
parentheses.

Hypothesis 1 Accurate understanding of an implemented feature is related
to a feeling of understanding it before seeing it implemented. (Users know
whether they have understood a feature).

Hypothesis 2 Liking of a feature before seeing it implemented is related to a
feeling of understanding it before seeing it implemented. (Users like concep-
tions they understand).

Hypothesis 3 Liking of a feature after seeing it implemented is related to a
feeling of understanding it before seeing it implemented. (Users like features
which were clear from the beginning).

Hypothesis 4 The deviation in liking a feature before and after seeing it im-
plemented is negatively related to a feeling of understanding it before seeing

269

REFSQ 2012 Empirical Track Proceedings

it implemented. (The better users have understood a feature, the better
they can predict whether they will like it. Alternatively, the causation could
be reversed: The more the users like a feature, the better they are able to
understand it with a short description).

Finding further relevant factors Unlike the other research goals, this one
was based on qualitative research. We collected feedback about what participants
thought influenced their answers to the questionnaire. There were no preformu-
lated hypotheses for this goal.

Different feature presentations Software requirements can be documented
and represented in multiple ways. Some of these are not suitable for use in a
questionnaire for non-technical users. We considered several formats which were
more or less self-explanatory. As we were concerned with a clear understanding
by a user who does not have the possibility to ask for clarification, we decided
to compare formats which are more or less close to a user’s point of view. We
included user stories and user tasks in our questionnaire.

We based our user stories on the guidelines given by [3]. They represent the
type of requirements documentation used in modern agile software development
approaches such as Scrum. Each user story is a short description of what the
user can do with the system, which is supposed to be documented on a separate
card and used primarily for release planning and developer task specification.
A user story is always written from the point of view of the end user, it is
closed and supports a user achieving a goal. The granularity is determined by
the development process: user stories do not contain details, so each of them
must be small enough to be sufficiently described in one or two sentences, and
to be implemented by a developer within a single sprint. Each user story should
be independent of other user stories. For the survey, we use each user story as a
separate feature. While a user story card can contain constraints (non-functional
requirements) or acceptance tests, we do not include these in the survey, as they
do not have a direct analogue in the other two approaches.

For user tasks, we use the guidelines proposed by [8], specifically the so-called
”task and support” approach. In this approach, the subtasks are combined with
proposed solutions which can be implemented in the system. User tasks are
written close to a user’s point of view. Each task is based on a goal the user wants
to achieve. Subtasks do not focus on either user or system; they ”describe what
the user and the computer do together” on a domain level. They are written in
the imperative mood, to hide who does what. The solutions may specify what the
system does, but this is not always the case. User tasks do not provide an ordered
sequence of steps the way use cases or scenarios do. However, they package small
substeps into bigger units, the tasks. Each task has one user goal and should
have closure. This means that a task provides more context information to the
user than formats which record each subtask-sized requirement independently.
For the purposes of our survey, we define each solution from the Task & Support
approach as a product feature.

270

Alive Experiment

We formulated several hypotheses on the differences which formats can cause
in the answers.

Hypothesis 5 The closer a format is to the user’s point of view, the better
the feeling of understanding it before seeing it implemented. (Users feel they
understand feature descriptions better when they are described from their
point of view).

Hypothesis 6 The closer a format to the user’s point of view, the better the
understanding after seeing it implemented. (Users understand features better
when they are described from their point of view).

Hypothesis 7 The closer a format is to the user’s point of view, the less de-
viation is there in liking the feature before and after seeing it implemented.
(Users can better predict their liking of a feature when it is described from
their point of view).

3.2 Features

The requirements specification used for the experiment contained fifteen features.
The complete specification in the user task format is shown in section 7. We tried
to make the specification as realistic as possible. We did not polish it to be the
best specification we can produce, but included features which we assumed were
not very good from the end users’ point of view. This was done in order to have
variability in the features’ liking, as we feared that, if all users like all features
uniformly, we would not be able to see any effects. We also included a ”double”
feature, where the users had to rate two either-or alternatives, none of which
were very user-friendly. The reason was that we wanted to force the participants
to dislike at least one feature, again to have more variability. Also, the fact
that one feature excluded the other was unusual (there was no obvious technical
reason why both could not be implemented at the same time), and we assumed
that some participants would be misled to believe that both features will be
included in the software allowing the user to choose between them at runtime.
We hoped that this would create a situation where users believe that they have
understood the feature before seeing the implementation, but recognize that
their understanding was not accurate after seeing the screencast.

Beside variability in liking, we also wanted to create variability in understand-
ing. For this, we knowingly kept some features ambiguous, omitting important
details. We feel that this made the situation more realistic. First, the literature
on user stories and user tasks suggests that these descriptions should not contain
very detailed information in order to prevent overspecification [8], [3]. Second,
in industry projects we have been involved with, we have often seen features
described at the same or at a more abstract detail level as the one we used, but
never at a lower, information-richer detail level. Thus, including intentionally
ambiguous feature descriptions made the experiment situation more realistic.

We developed a GUI protoype based on our specification and created a real-
istic test data set including actual receipts. The prototype was created in Java
and had only rudimentary functionality, but, when used with the test data set,

271

REFSQ 2012 Empirical Track Proceedings

it could create a convincing illusion of actually having the functionality de-
scribed in the specification. We created screencasts of one experimenter using
the features described in the specification, accompanied by an audio commen-
tary explaining what is happening on the screen. These screencasts were shown
to the participants during the experiment, as explained in the next section.

3.3 Questionnaire

The questionnaire consisted of four parts. The participants were given time to
answer parts one and two, then asked to wait for a software demonstration.

Part one contained general demographic questions. Participants were asked
about their expertise in requirements engineering and their experience with dif-
ferent requirements representation formats. The data from these answers is not
evaluated for any of the hypotheses listed in the research goals; rather, it is used
to describe relevant demographic factors of the experiment participants.

In part two, the participants were asked to read a requirements specifica-
tion and answer questions about the features it contained. There were two types
of questionnaires, which differed in this part. One type had user stories, each
printed in a simple box without a number, representing a story card. The sec-
ond type had two user tasks formatted as described in [8] with each solution
containing a single feature. The wording of all features was equivalent in both
formats except for rules prescribed by the format.

For each feature, participants were asked to answer two questions:

Question 1 ”My conception of the way this feature will be implemented is ...”,
followed by a five-point Likert scale labelled clear/vague/non-existent (All
Likert scales used in this questionnaire were five-point with only the first,
third and fifth point labelled). This question was used to measure the feeling
of understanding before seeing the implemented feature.

Question 2 ”I think I will ... this feature when it is implemented”, followed by
a Likert scale labelled like/be indifferent/dislike. This question was used to
measure liking before seeing the implementation.

These two questions were followed by a prioritization task. We have not yet
completed the evaluations based on the data from the prioritization, so we do
not report on it further in this article.

In part three, the participants again were shown each feature, with three new
questions per feature. They were instructed to wait for a video demonstration
of the features before answering the questions. Each demonstration contained
two or three features, so that features which were solutions to the same task as
defined in the user tasks were bundled in the same demonstration. Participants
were given time to answer the questions about all features in a demonstration
before the next demonstration was presented.

Question 3 ”The feature corresponds ... to my previous conception”, with a
Likert scale labelled very well/somewhat/not at all. This question was used
to measure accurate understanding.

272

Alive Experiment

Question 4 ”The implemented feature differs from my previous conception in
the following ways:”, followed by empty space for a freely formulated answer.
This question was used for generating ideas for other relevant factors (second
research goal).

Question 5 ”I ... the feature the way it is implemented now.”, followed by a
Likert scale labelled like/be indifferent/dislike. This question was used to
measure liking of a feature after seeing the implementation.

Part four included one open-ended question, and a feedback section. In the
question, we asked the participants to give us suggestions on how they would
have improved the feature descriptions to improve their understandability. In
the feedback section, we asked for freely-formulated feedback on any part of the
experiment, the conduction, and the questionnaire. The answers from this part
were used to generate new ideas for relevant factors (second research goal), as
well as for recognizing possible threats to validity, and as information on how to
structure a follow-up experiment.

4 Results

We used the statistical language R to evaluate the hypotheses stated in section
3.1. We could not confirm the hypotheses about the differences in the description
formats, but found a good correlation in most hypotheses about the relations
between the understanding and liking of features before and after seeing their
implementation. The qualitative analysis of the open-ended questions as well as
the feedback the participants gave during a discussion session at the conference
led to interesting new ideas which we will explore in further experiments.

4.1 Correlation of End User Satisfaction with Proposed Factors

To this research goal, we calculated a correlation coefficient for hypotheses 1
through 4. As this is not a significance test for a parameter, we can not offer a
significance level; rather, we can say that the higher the absolute value of the
correlation coefficient, the more connection there is between the two phenomena.
The results are listed in table 1. Figure 1 gives an overview of the correlations
we found.

����������	
	���	��������
�����	
	�����������	��

�����	
	����������	��

���������������������	��

��������	��������������	��
����

����

����

�����

Fig. 1. Concepts measured and their correlations

We found that most hypotheses of this research goal, with the exception of
hypothesis 3, were confirmed. The correlation coefficients were clearly different
from zero (so the two factors are related), and the sign direction was as the

273

REFSQ 2012 Empirical Track Proceedings

Hypothesis Questions Corre-
lation

Accurate understanding of an implemented feature
is related to a feeling of understanding it before see-
ing it implemented.

Q 1 and Q3 0.37

Liking of a feature before seeing it implemented is
related to a feeling of understanding it before seeing
it implemented.

Q 2 and Q 1 0.39

Liking of a feature after seeing it implemented is
related to a feeling of understanding it before seeing
it implemented.

Q 1 and Q5 0.08

The deviation in liking a feature before and af-
ter seeing it implemented is negatively related to
a feeling of understanding it before seeing it imple-
mented.

(Q 5 - Q 2) and Q1 -0.23

Table 1. Hypotheses about the connections between the concepts

hypothesis predicted. We conclude that a clear conception is an important factor
in the participants’ answers to a questionnaire with software feature descriptions.
We propose the tentative interpretation that people tend to be unsure about
what answer to give for a feature they can not picture clearly. We cannot claim
that the data confirms this interpretation; we need more research, not based on
pure correlation, to find out whether this interpretation is correct.

4.2 Finding Further Relevant Factors

We are interested to know what influences the answers the participants give to
questions such as ”Do you like this feature” and also their ability to envision
how a feature will be implemented. The discussion and the answers to the open
questions provided us with ideas about such factors.

Participant has encountered feature before. We chose an unknown soft-
ware product, in order to avoid the situation that participants have preconceived
notions about features based on their previous experience with such software.
The discussion made us realize that this effect can emerge not only on the level
of a software application, but also on the level of a single feature. The partici-
pants reported that they had a good understanding of features which they had
previously encountered in unrelated software products, and that they had dif-
ficulty creating a clear concept of features specific to our software. The data
confirms this claim: the features with the highest arithmetic mean in the answer
to question 1 were the ones related to printing (feature 14, μ = 4.75)1, exporting
a report (feature 15, μ = 4.44) and saving data in a file (feature 7b, μ = 4.16).

1 As the results are measured on a five point Likert scale, the minimum possible score
is 1, the maximum possible score is 5

274

Alive Experiment

This functionality is common in many types of software, and probably most of
our participants have encountered it before.

Participant cannot imagine a good use for the feature. This was a com-
ment left by one participant in the feedback part. He or she claimed that it
was very hard to build a clear conception of the feature when he or she did not
know why it could be useful or what they would want to use it for. This is an
interesting comment which is in line with the recognized importance of ratio-
nale in requirements engineering [4]. In a follow-up experiment, we will include
questions designed to measure the influence of this factor on the understanding.

Participant has no emotional attachment to the software product. This
was suggested by a participant who claimed that he or she marked the ”indif-
ferent” option for all features not because of the relative merit of the feature
as compared to other features in the description or to other possible features
implementing a similar functionality, but because he or she found the software
very ”boring” and was indeed indifferent to anything which had to do with the
software product we presented. This finding is in line with results of marketing
research. First, modern theories of consumer satisfaction agree that satisfaction
has both an emotional and a rational dimension. We chose to ask a single (ex-
pected) satisfaction question in this experiment, and formulated it using a word
associated with emotions: like. It is possible that another formulation, such as
one using a word associated with rational utility like useful, would have pro-
duced a different result at least from this user. However, marketing literature
emphasizes that a customer should create an emotional connection to a product
for satisfaction (as made popular by the AIDA principle - a customer’s relation
to a product starts with simple Attention, but it has to include Interest and
Desire before they Act on it [5]), so maybe, while a rational formulation of the
question could have produced different results, they would not necessarily have
reflected the user’s satisfaction well enough. This is an interesting connection we
plan to research in more depth in future experiments.

Suggested improvements to feature presentation At the end of the ques-
tionnaire, we asked the participants to leave their assumed role of end users and
reflect from the viewpoint of requirements specialists. We asked them to give
us suggestions on how to improve the feature descriptions in order to achieve
a better understanding and more accurate answers about the expected satis-
faction. We received many suggestions, some of them given by more than one
participant. We agree that all these suggestions have the potential to increase the
understanding, but our background is a specific situation: a project with limited
resources in an early phase of requirements elicitation and validation. Thus, we
evaluated the suggestions on two criteria: the potential for increasing the users’
understanding and the feasibility of a project team creating the suggested arte-
facts in this project phase. We will do further research on the suggestions which
scored high in both dimensions.

275

REFSQ 2012 Empirical Track Proceedings

Participants’ suggestions for individual features While evaluating the
answers to the open-ended questions, we observed that the participants often
offered suggestions for improving a feature, or at least could articulate what
they dislike in a feature. Without receiving any specific guidance, they often
made remarks which could be clearly assigned to the desire for a different user
interface or different functionality, and they made clear what they would like to
see instead of our solution. This effect was especially strong in features which
were intentionally designed to be user-unfriendly, but it also existed in other
features. The users even noticed potential problems which we had not noticed
in our specification, but which sounded like true problems (as compared to the
desire to have something in a different way without being objectively better) and
could be solved without much additional development effort (in the case that
the application was actually implemented).

While we are aware that our participants were experienced software engi-
neers and thus can be expected to come up with such suggestions at a higher
rate than the general population, the suggestions they had were often simple,
interaction-specific changes which are not beyond the reach of users without
a background in software engineering. For example, a frequent suggestion was
that the report should be exported in common office formats, such as Word of
PDF. Other suggestions showed that the participants were evaluating the fea-
tures from the point of view of a user and not of a software engineer, for example
the frequent suggestion that the text recognition should function reliably enough
that the user does not have to confirm and correct the results. While this is a
very understandable desire of a user, we expect software engineers to consider
technology limitations before writing such a suggestion. We found no indication
that such limitations had been considered, except for one participant who did
not suggest perfect recognition, but instead suggested that the software displays
reliability numbers (how confident it is that a given recognized text string is
correct). Thus, we expect users without experience in software engineering to
be able to give similar feedback, even though we expect them to have a lower
suggestion rate and a lower ratio of useful to infeasible feature change sugges-
tions. This expectation has yet to be confirmed in future research before it is
incorporated in our technique.

4.3 Different Feature Presentations

One of our research goals was to compare the liking and understanding between
features described in different formats. The used formats were rather similar in
their degree of closeness to the users’ point of view, but differed in the amount
of context offered, with user tasks bundling related features together and con-
taining additional information per task, while the user stories were represented
on unconnected ”cards”. Thus we expected to see differences between the two.

We did two comparisons in parallel. The first one was a straightforward
t-test of the arithmetic mean calculated separately for both types of feature
description. The second one was an ANOVA test, which, with only one pair of
treatments, resulted in a simple t-test for the variance of both distributions [6]. In

276

Alive Experiment

the following, we call the participants who answered the user task questionnaire
user task group and the participants who answered the user story questionnaire
user story group.

Table 2 shows the exact formulation of our hypotheses. The column Question
contains the number of the question which was used for evaluating the hypoth-
esis. We evaluated by comparing the answers to this question given by the two
groups. The last hypothesis included building a difference of the answers of two
questions and comparing the mean and the variance of the difference. None of
the hypotheses could be confirmed at a significance level of 5 %, neither when
comparing the means nor when comparing the variances.

Hypothesis Question Result
The closer a format is to the user’s point of view, the better
the feeling of understanding it before seeing it implemented.

Q 1 not con-
firmed

The closer a format to the user’s point of view, the better
the understanding after seeing it implemented.

Q 3 not con-
firmed

The closer a format is to the user’s point of view, the less
deviation is there in liking the feature before and after seeing
it implemented.

Q 2 - Q5 not con-
firmed

Table 2. Hypotheses about different feature presentations

We could not confirm any of the hypotheses we created for this research goal.
Our conclusion is that the format in which feature descriptions are represented
does not matter for the understanding or the liking of features, at least when we
compare user tasks to user stories. The richer context of user tasks does not seem
to lead to a better understanding. In the future, we plan to research the same
hypotheses, but to include a format which is far removed from the users’ point
of view, for example sentence templates. The templates described e.g. in [13]
begin with ”The system shall” and continue to describe what the system does,
instead of what the user does using the system.

4.4 Threats to validity

Conclusion validity We identified two possible threats to conclusion validity.
First, we are not aware of any objective measures for the variables we measured,
so we had to rely on self-reporting. Second, we ran a large number of hypotheses
on the same data set. This is problematic for confirming a theory, as it lowers
the actual significance level, but we used significance tests only for exploratory
research and do not claim that the results are conclusive.

Internal validity The quality of the instruments we used for our experiment
can also have compromised our experiment validity. First, users may have mis-
understood questions due to ambiguity. We tried to counter this by presenting
the questionnaires to coworkers not involved in the project and asking them

277

REFSQ 2012 Empirical Track Proceedings

whether they understood the questions the way we intended them. Second, we
used screencasts of the software. The users’ true judgement of features may have
been incomplete, because they did not work with the software themselves.

Construct validity The questions we asked may not be best suited to measure
the concepts of understanding and liking. For example, some users may have
found it hard to answer whether their understanding had been accurate, as they
might have had difficulty remembering how they imagined the features before
the screencast.

External validity The most serious problem with our experiment is that the
participants were software engineering experts and not typical users with non-
technical background. The situation we used in the experiment was also not
perfectly realistic. The users did not know why they should use the software.
The feature descriptions may also not represent user stories well enough. We
created them as tasks first and ”translated” them into user stories. It is possible
that requirements written after user story principles would have had a different
content or granularity.

5 Conclusions and Future Work

Our experiment is based on the assumption of a certain project situation - the
need to validate features with end users who were not involved in the feature
elicitation, under limited resources. We propose that in this case, a questionnaire
can be used for the validation, and the experiment aimed at finding out how
accurate such a questionnaire can predict the users’ future satisfaction with the
software. We had three main research questions. Two of them were based on
assumptions we made, and tried to confirm a number of hypotheses related to
each assumption.

We could confirm almost all hypotheses related to the assumption that the
ability to build a clear conception of a future implementation based on just a
feature description has a strong influence on the answers to an expected satisfac-
tion questionnaire. We plan to continue research focussed on this understanding
and ways to improve it, in order to reduce the undesirable influence of low un-
derstanding on the rating of features on a scale for expected satisfaction.

We could not confirm the hypotheses related to the assumption that the
feature description format has an influence on the answers to an expected satis-
faction questionnaire. This finding has important consequences for our proposed
technique: if every format is understood well enough, the technique can be used
in projects employing any format without the need to translate the requirements
to a specific format suited to the technique.

The open-ended questions as well as the feedback section allowed us to find
other possible factors influencing the accuracy of self-reported satisfaction ex-
pectation. We intend to measure the influence of these factors in future research.

278

Alive Experiment

The future research questions mentioned above will be addressed in a future
experiment, conducted with university students without a software engineering
background. The design of the new experiment will be altered in order to measure
the effects we did not measure in this experiment, especially the ones we found
suggested in the open-ended questions and the written and verbal feedback.
It will also contain the old questions, so it will provide confirmation for the
findings already presented here. The use of a different demographic composition
will address some of the threats to validity discussed in the previous section.

6 Acknowledgements

We thank the RefsQ organizers and especially the empirical track chair for giving
us the possibility to conduct this experiment. We also thank all RefsQ partici-
pants who participated in our experiment.

The experiment is part of the project VaREMed (Value based requirements
for medical software), funded by the Deutsche Forschungsgesellschaft.

References

1. Buttle, F., SERVQUAL: review, critique, research agenda, European Journal of
Marketing, vol. 30, issue 1, MCB UP1996

2. Clements, P. and Northrop, L., Software product lines, 2001, Addison-Wesley

3. Cohn, M., User stories applied: For agile software development, 2004, Addison-
Wesley

4. Dutoit, A.H. and McCall, R. and Mistŕık, I. and Paech, B., Rationale management
in software engineering, 2006, Springer

5. Ferrell, O.C. and Hartline, M, Marketing strategy, 2005, Thomson South-Western

6. Freedman, D. and Pisani, R. and Purves, R., Statistics, 2007, W.W. Norton & Co

7. Giesen, J., Volker, A., Requirements interdependencies and stakeholder prefer-
ences, Proceedings of the IEEE joint international conference on requirements en-
gineering, IEEE 2002

8. Lauesen, S., User interface design: a software engineering perspective, 2005,
Addison-Wesley

9. Martilla, J. and James, J., Importance-performance analysis The journal of mar-
keting, JSTOR 1977

10. Moore, W., Concept testing, Journal of business research, vol.10, issue 3, Elsevier
1982

11. Oliver, R.L., Satisfaction: A behavioral perspective on the consumer, 2010, ME
Sharpe Inc

12. Ruhe, G. and Saliu, M.O., The art and science of software release planning, IEEE
software vol. 22, issue 6, 2005

13. Rupp, C., Requirements Engineering und -Management, 2009, Hanser

279

REFSQ 2012 Empirical Track Proceedings

7 Appendix: Feature descriptions as user tasks

Task 1 Digitize receipt
Start: The user has received one or more receipts

End: The data from the receipts are archived

Subtasks Solution

Import receipt

1 The system imports a picture of the receipt.

2 The system makes it easy to prepare the picture for recog-
nition.

3 The system recognizes the text in the picture.

4 The system guesses a single tag and applies it to each
expense item. The user doesn’t predefine any tags.

Check and correct
receipt data

5 The system allows the user to change any part of the
recognized content in a receipt.

6 The system allows the user to change the tag for each
expense item separately.

Archive data

7a) Option 1: The system archives the data on the servers
of the system vendors (cloud storage). No local saving is
possible. All data is saved automatically.

7b) Option 2: Instead of cloud storage, the system archives
the data locally. The user has to trigger the saving.

8 The system offers export of the receipt data.

Task 2 View expenses report
Start: The user needs information on expenses

End: The relevant information has been viewed and possibly
printed.

Subtasks Solution

Select the input for
the report

9 The system offers the user to select the receipts to be
used in the report.

10 The system offers several search and filter options for
finding relevant receipts in the receipt list.

11 The system offers templates for different types of report.

12 The system allows the user to input parameters for the
report, e.g. a month for a report which shows expenses for
a given month.

Produce report

13 The system processes the data needed for the report and
shows onscreen a report in a print-friendly layout.

14 The system allows the user to print the report.

15 The system allows export of the report data.

280

Alive Experiment

9�Online�Questionnaires�

Online�Questionnaires�Programme�

� A�Survey�on�Empirical�Requirements�Engineering�Research�Practices�
Nelly�Condori�Fernandez,�Maya�Daneva,�and�Roel�Wieringa�

282

� Preliminary�Results�of�a�Survey�on�Requirements�Engineering�for�variability�intensive�
Software�Systems�
Christian�Manteuffel,�Matthias�Galster,�and�Paris�Avgeriou�

296�

�

�

� �

REFSQ 2012 Empirical Track Proceedings

281

A Survey on Empirical Requirements Engineering
Research Practices

Nelly Condori-Fernandez, Maya Daneva, Roel Wieringa
University of Twente,

Enschede, The Netherlands.
{n.condorifernandez, m.daneva, r.j.wieringa}@utwente.nl

Abstract. [Context and Motivation]. In recent years a number of checklists
for empirical research in software engineering have been published. So far, the
checklists for experimental research differ from those of observational research.
This leaves the important commonalities between these kinds of research
unexploited. Recently, a unified checklist has been published that identifies the
commonalities and identifies the difference between these two types of
research. So far, little work has been done to evaluate checklists in practice.
[Objective] Our goal is to gain insight into the current practice of empirical
research in requirements engineering. [Method] We surveyed the empirical
research practice of participants of the REFSQ 2012 conference. The survey
was part of the REFSQ 2012 Empirical Track. [Conclusions] We found that
there are 15 commonly used practices out of the set of 27 that we took from the
unified checklist. Second, we found that senior researchers and PhD students do
not always converge in their perceptions about the usefulness of research
practices. We discuss the import of these findings on RE research practice.

Keywords: empirical research checklist, survey, requirements engineering

1 Introduction

In recent years, there has been an increased interest in empirical research in
Requirements Engineering (RE). This increase is not only reflected in the number of
published empirical studies but also in the growth of methodological advise on
empirical software engineering (SE). For example, we observe an increasing diversity
of proposed checklists concerning the planning, execution and reporting on empirical
SE studies [4][5][6][7]. The checklists for experimental research differ substantially
from the checklist for observational case study research. This is a missed opportunity,
because beyond the obvious difference that experimental research applies a treatment
and observational research does not, there is considerable common structure among
both kinds of research. Identifying this common structure enhances our understanding
of the checklists and allows us to combine the best elements if both kinds of
checklists into one. The unified checklist proposed by Wieringa [1] is based on an
analysis of extant checklists as well as on checklists for empirical research
[4][5][6][7] [8] as well as an earlier analysis of the logic of the engineering cycle [9].

282

Online Questionnaires

After a first experimental evaluation [10], the checklist was simplified, and this
simplified version was used as the basis for the current survey.

The majority of these checklists have not yet been sufficiently evaluated in terms of
their usability and usefulness. What do we know about the use of these recommended
practices in RE? And what do we know about the practice of empirical research in RE
at all? We conducted a survey among the participants of the REFSQ 2012 conference
to collect data about their empirical research practice by asking them, for each of the
items of the unified checklist, whether or not this item belongs to their practice.

The paper is structured as follows. Section 2 describes the research method. Section 3
presents the survey results obtained and provides the discussion over these results.
Finally, in section 4 we provide our final conclusions.

2 Method

With our survey we aim to address the following research questions:

RQ1: What are common practices in designing and reporting empirical research
carried out by researchers and practitioners?

RQ2: What recommended practices reported in the literature do researchers and
practitioners consider useful for designing and reporting empirical research?

We followed the guidelines of Kitchenham and Pfleeger in [3] to create a web-based
survey, consisting of 50 questions (summarized in Table 1). 30 out of 50 questions
were formulated to discover which of the recommended practices in the literature are
performed by the respondents. Each of these questions was rated on a 3-point nominal
scale [‘yes’, ‘no’, ‘unsure I understand what you ask’].

The remaining questions were formulated in order to understand the usefulness
perceived of the most recommended practices for empirical research (case studies and
experiments). A 5-point Likert scale was used for this set of questions, where 1 = not
useful and. 5 = very useful.

The questions focus on different recommended practices to be considered through six
phases of the empirical cycle [2]: research problem investigation, research design,
research design validation, execution and results evaluation. The questions were
based on a revision of the unified checklist proposed by Wieringa [1]. We tested the
questionnaire with 1 PhD student and 1 Post doc researcher, who have experience in
designing experiments. The questionnaire testing discovered the unclear questions,
and it helped us to remove some ambiguities.

283

REFSQ 2012 Empirical Track Proceedings

Table 1. Summary of survey questions
ID Question Scale

Q1 Is your empirica l research usual ly motivated by the goal to improve some artefact ?

Q2 Do you usual ly define a top-level knowledge goal for your empirica l research?

Q3 Do you usual ly review the current s tate of knowledge related to your empirica l research?

Q4 Do you think that the fol lowing practices would be useful to have a better contextual i zation of your research?

Q4.1 Defini tion of improvement goal

Q4.2 Defini tion of knowledge goal

Q4.3 Review of the current s tate of knowledge

Q5 Do you usual ly define a conceptual framework for the phenomena to be investigated in your research?

Q6 Do you usual ly operational i ze the concepts of this framework?

Q7 Do you va l idate these operational izations?

Q8 Do you usual ly formulate the research questions in your empirica l research?

Q9 Do you usual ly describe the population in your empirica l research?

Q10
Do you think that the fol lowing practices would be useful to improve
the understanding of your research problem?

Q10.1 Defini tion of relevant concepts of the phenomena to be investigated

Q10.2 Operational ization of the concepts defined

Q10.3 Val idation of the operational ization of concepts

Q10.4 Formulation of research questions

Q10.5 Description of population

Q11 Do you usual ly justi fy the acquis i tion process of the object of s tudy for your empirica l research?

Q12 Do you cons ider any ethica l i ssue in your research involving human subjects?

Q13
Do you usual ly justi fy the representativeness of the object of s tudy for the population
 in your empirica l research?

Q14 Do you usual ly cons ider a l l the assumptions of inference techniques to be used in your empirica l research?

Q15 Do you usual ly plan the procedures to be fol lowed in the experimenta l treatment?

Q16 Do you usual ly speci fy any instruments needed to apply the treatments of your experimenta l research?

Q17 Do you usual ly speci fy any instruments needed for measurement?

Q18 Do you usual ly speci fy procedures to be fol lowed when performing measurements?

Q19 Could you indicate whether you usual ly cons ider the va l idi ty of the fol lowing i ssues?

Q19.1 Measures

Q19.2 Measurement procedure

Q19.3 Measurement instrument

Q19.4 Treatment

Q19.5 Treatment procedure

Q19.6 Treatment instrument

Q20 Do you think that the fol lowing practices would be useful to improve your research des ign?

Q20.1 Justi fication of the acquis i tion process of the objects of s tudy

Q20.2 Ethica l i ssues

Q20.3 Representativeness of the objects of s tudy selected

Q20.4 Cons ideration of a l l assumptions of the inference technique to be used

Q20.5 Speci fication of the treatments planning

Q20.6 Des ign of the instruments and procedures to apply the treatments

Q20.7 Des ign of the measurement instruments and procedures

Q21
Do you think that i s necessary to report what actual ly happened
during the execution of an empirica l research about the fol lowing i ssues?

Q21.1 Deviations from the acquis i tion plan of objects of s tudy

Q21.2 Deviations from the treatment plan

Q21.3 Deviations from the measurement plan

Q22 Do you usual ly expla in your observations in terms of underlying mechanisms or ava i lable theories?

Q23 Do you usual ly assess the plaus ibi l i ty of your explanations?

Q24 Do you usual ly answer the research questions expl ici tly?

Q25 Do you usual ly veri fy that the contributions to improvement goal are described in your report?

Q26 Do you usual ly veri fy that the contributions to knowledge goal are described in your report?

Q27 Do you think that the fol lowing practices would be useful to improve the report of your empirica l resul ts?

Q27.1 The use of mechanisms or ava i lable theories to expla in your observations

Q27.2 Plaus ibi l i ty assessment of your explanation

Q27.3 Plaus ibi l i ty assessment of tested hypotheses

Q27.4 Contributions to improvement goal

Q27.5 Contributions to knowledge goal

No
m

in
al

No
m

in
al

5-
ite

m
 Li

ke
rt

No
m

in
al

Lik
er

t
No

m
in

al
Lik

er
t

No
m

in
al

Lik
er

t

RRe
se

ar
ch

 c
on

te
xt

RRe
se

ar
ch

 p
ro

bl
em

RRe
se

ar
ch

 d
es

ig
n

an
d

ju
st
ifi

ca
tio

n
EEx

ec
ut

io
n

RRe
su

lts

284

Online Questionnaires

Moreover, in order to gather information about the respondents, five closed-ended
questions were asked at the beginning of the survey. The information included the
sector of their current job (e.g. academia); their role in the organization, experience
years in requirements engineering, experience level in designing experiments or case
studies. The survey was implemented using the Surveygizmo tool [12], and was
configured to be accessible on laptops, tablets and mobile platforms.

2.1 Data collection

The survey was electronically distributed by the REFSQ 2012-participants mailing
list, which was established to facilitate communication among the organizers of the
conference, researchers and practitioners participating in the 18th International
working conference on Requirements Engineering: Foundation for Software Quality
[13]. From 110 participants that were registered at the REFSQ conference, 36
completed our survey, 6 participants answered partially and 7 participants abandoned
the survey after reading the instructions. We collected survey data during two weeks,
from 19 to 30 March 2012. Actually, the data collection was originally planned to be
carried out only during the conference week, but with the purpose of increasing our
response rate this was extended to one week more. Two reminder emails were sent to
encourage participants who had not yet responded the survey to reply.

2.2 Respondents’ characteristics

As is shown in Figure 1, the survey response captured a diverse of range of roles,
since Master students from academia to Senior consultants from industry. 17 out of 42
respondents were PhD candidate (40,5%), only one of them worked also in the
industry sector. The other almost half of respondents were senior researchers (42,9%),
where 15of them come from academia, 2 from industry and 1 from both sectors.

The survey participants also reflect a diverse range of experience with requirements
engineering (See Figure 2) and empirical research (See Table 2).

285

REFSQ 2012 Empirical Track Proceedings

Figure 1. Distribution of respondents per role in their current organization

Figure 2. Distribution of respondents’ experience with Requirements Engineering

Table 2. Experience in designing experiments or cases studies.

Number of
times

Sector
Total Academia Industry Both

de
si

gn
in

g
ex

pe
rim

en
ts

 >30 0 0 0 0
>20-30 0 1 0 1
>10-20 4 0 0 4
>5-10 6 1 1 8
1-5. 21 2 1 24
0 4 1 0 5

Total 35 5 2 42

Number of
times

Sector
Total Academia Industry Both

de
si

gn
in

g
ca

se

st
ud

ie
s

>30 1 1 0 2
>20-30 2 1 0 3
>10-20 4 1 1 6
>5-10 3 1 0 4
1-5. 21 0 1 22
0 4 1 0 5

Total 35 5 2 42

286

Online Questionnaires

3 Survey results

The complete report contains the Chi-square statistics for the survey [11].

3.1 Research context.

As is shown in Figure 3, 35 out of 39 respondents (89%) acknowledge that they
usually review the current knowledge related to their empirical research (Q3). 32 of
them (82%) stated that they usually define a knowledge goal when investigating an
engineering problem (Q2). It is important to remark that 6 respondents did not get to
understand this question. 3 out of these 6 respondents were post-Docs, 2 PhD
students, and 1 a senior researcher. However, 34% out of 39 responses stated that they
omit the definition of improvement goals in their empirical research (Q1) as part of
their practice. Only 1 respondent reported the question as not understandable. This
respondent was a senior researcher with a medium level of empirical experience.

26
32 35

12

26

0

5

10

15

20

25

30

35

40

Q1 Q2 Q3

Yes No Unsure I understand what you ask

Figure 3. Distribution of practices on contextualization of empirical research
problems

Applying the Chi-square test of goodness of fit, we found that the definition of
improvement goal (Q1) can be considered as a common practice but only among
senior researchers (p=0,004). However, for the definition of knowledge goal (Q2) and
review of the current state of empirical knowledge (Q3), we corroborated enough
evidence to consider them to be common practices among PhD students and senior
researchers (p=0,001).

287

REFSQ 2012 Empirical Track Proceedings

Table 3 shows that the percentage of neutral responses was higher for the first
recommended practice “definition of improvement goal” than for the other two
practices. This means that 23% of respondents preferred to choose a neutral position.
In general terms, respondents tend to perceive the last two practices as very useful
(above 50%).

Table 3. Perceived usefulness of the recommended practices for contextualizing

 Perceived Usefulness

Question 1
(not useful)

2 3
(neutral)

4 5
(very useful)

Q4.1 2.9% 0.0% 22.9% 34.3% 40.0%

Q4.2 0.0% 2.9% 14.3% 25.7% 57.1%

Q4.3 0.0% 0.0% 11.1% 27.8% 61.1%

3.2 Research problem. Figure 4 shows our observations collected from the next
five questions(Q5-Q9); where we can note that the practice with highest percentage of
respondents (97%) is the “formulation of research questions” (Q8), followed
surprisingly by the “description of the population to be investigated” practice (Q9)
with a 89% of respondents. We also noted that only 57% of respondents recognized to
the “definition of relevant concepts of the phenomena to be investigated” (Q5) as part
of their common practices. The other half of respondents stated that they did not
consider this practice in their empirical studies (22%) or simply were not able to
understand the question (18%). Figure 4 also illustrates that the total of affirmative
responses for question Q6 and Q7 decrease drastically. This is because the Q6 and Q7
were enabled only if respondents answered the respective previous question (Q5 and
Q6) affirmatively. Thus, only 23% indicated that the validation of the most relevant
concepts previously operationalized is considered in their empirical research.

22
14

9

37 34

9

2
5

1
37

6

0

5

10

15

20

25

30

35

40

Q5 Q6 Q7 Q8 Q9

Yes No Unsure I understand what you ask

Figure 4. Practices applied to enable a better understanding of a research problem

288

Online Questionnaires

Applying the Chi-square test for this set of questions, we found enough evidence only
for the last two practices recommended for understanding better the problem to be
investigated empirically: formulation of research questions and description of
population. (p<0,05).

Analyzing the distribution of frequencies for usefulness perceived (Table 4), we can
see that only 38.7% of respondents perceived the practice “operationalization of the
relevant concepts” as very useful, while 26% chose a neutral response.

We also noted that although the “description of population” practice was considered
as a common practice by the senior researchers and PhD students, only 51% of
respondents perceived this practice as very useful and 32% as useful. A possible
explanation could be that majority of our respondents were more familiarized with
case studies, where concepts on population and operationalization are not sufficiently
addressed by respondents.

Table 4. Perceived usefulness of the practices recommended for understanding the
research problem

 Perceived Usefulness
Question 1

(not useful)
2 3

(neutral)
4 5

(very useful)
Q10.1 0.0% 2.9% 11.4% 25.7% 60.0%

Q10.2 0.0% 6.5% 25.8% 29.0% 38.7%

Q10.3 0.0% 3.0% 27.3% 21.2% 48.5%

Q10.4 0.0% 0.0% 2.7% 18.9% 78.4%

Q10.5 0.0% 2.7% 13.5% 32.4% 51.4%

3.3 Research design and justification. In this section, we report our results
collected from the questions (Q11-Q19.6) formulated in order to know which of the
practices are most applied by the respondents for getting better research designs and
justifications. Figure 5 shows that the practice of “justifying the acquisition process of
the object of study” is the one that is least applied by the respondents (48%); followed
by the practice of “considering all assumptions of inference techniques” (17 out of
37). In both cases, a considerable number of respondents found difficulties to
understand these questions (Q11 and Q14). This can be due to the fact that the
questions were rather ambiguous, or that respondents are not familiarized with the
terminology, precisely because these recommended practices are not applied by them.

We also noted that 35% of respondents did not consider any ethical issue in their
empirical research (Q12). This observation can be due to the fact that respondents are
partially aware of the meaning of ethics (e.g. they can believe that ethical issues
should only be considered where experiments could induce life threatening conditions
in humans).
On the other hand, considering that questions Q15 and Q16 showed only whether the
respondents had experience in designing experiments, we noted that 3 out of 4

289

REFSQ 2012 Empirical Track Proceedings

respondents, who did not understand the question Q16, were senior researchers with a
high level of empirical experience. However, 10 of 28 respondents who stated that
they consider this practice (“specification of any instrument to apply the treatments”),
were also researchers with a high level of empirical experience.

Applying the chi-square test, we found that although 28 respondents answered
affirmatively to the question Q16; there is only a significant difference in the opinions
given by PhD students (p=0,001) but not by senior researchers (p=0,02). For
questions Q13 (justification of the representativeness of the object of study for the
population), Q17 (specification of any instrument for measurement), and Q18
(specification of procedures to be followed when performing measurements), we
found enough evidence to affirm that these three practices are those most applied by
our respondents.

Figure 5. Practices applied to get a better research design and justification (part I)

Figure 6 shows results about the practices recommended regarding the validity of
measures (Q19.1), measurement procedures (Q19.2), measurement instruments
(Q19.3), treatments (Q19.4), treatment procedures (Q19.5) and treatment instruments
(Q19.6). More than 70% of respondents stated that they apply the first four practices
in their research. However, we corroborated that the last two practices recommended
are only applied by senior researchers.

290

Online Questionnaires

Figure 6. Practices applied to enable better research design and justification
(part II)

We can see that only 16.7% of respondents perceived the practice “justification of the
acquisition of the object study” as very useful, while 30% chose a neutral response.
We also noted that although the “specification of measurement instruments and
procedures” practices were considered as a common practice by the senior researchers
and PhD students, only 47% of them perceived both practices as very useful and
23.5% preferred to choose a neutral response. Once, this could be due to that majority
of our respondents were more familiarized with case studies, where measurement
concepts are less used than by researchers familiarized with experiments.

Table 5. Perceived usefulness of the practices recommended for research design and
justification

 Perceived Usefulness

Question 1
(not useful)

2 3
(neutral)

4 5
(very useful)

Q20.1 6.7% 13.3% 30.0% 33.3% 16.7%

Q20.2 8.8% 29.4% 20.6% 11.8% 29.4%

Q20.3 0.0% 3.0% 18.2% 30.3% 48.5%

Q20.4 0.0% 12.5% 18.8% 28.1% 40.6%

Q20.5 0.0% 9.1% 24.2% 30.3% 36.4%

Q20.6 6.3% 9.4% 25.0% 18.8% 40.6%

Q20.7 5.9% 2.9% 23.5% 20.6% 47.1%

291

REFSQ 2012 Empirical Track Proceedings

3.4 Research execution

Concerning the questions on research execution, the respondents mostly declared that
they understand the questions. However, it is noteworthy that in Q21.1, about the
report of deviations from acquisition plan of objects study, there were a higher
number of subjects who were unsure about the meaning of this practice in comparison
to other questions in this section (see Figure 7).
Overall, these answers suggest that nearly 90% of the participants do consider it
necessary to report what actually happened during the execution of empirical
research, in terms of deviations from either the acquisition plan of objects of study
(Q21.1), or the treatment plan (Q21.2), or the measurement plan (Q21.3).
Applying the chi-square test, we found that although 26 respondents answered
affirmatively to the question Q21.1; there is only enough evidence to confirm that
“the report of deviations from the acquisition plan of objects of study” is a common
practice among PhD students (p=0,002) but not by senior researchers (p=0,041).
However, reporting the deviations from the treatment and measurement plans are
considered valuable information to be reported (by senior researchers and PhD
students).

Figure 7. Research execution practices

3.5 Results analysis.

Questions Q22 through Q26 concern what the participants say that they do when
analyzing their results (see Figure 8).
Regarding the terminology used, everyone understood the question Q24, but a few
respondents answered that they were unsure about the meaning of “explain
observations in terms of underlying mechanisms or available theories” (Q22), or
“assess the plausibility of explanations” (Q23), or “verify that contributions to the
improvement/knowledge goal are described” (Q25 and Q26).
According to what people usually do in their analyses, we can say that nearly 90% of
the participants try to answer the research questions explicitly. In contrast, about 22%
of the participants (majority of them PhD Students) affirmed that they do not usually
explain their observations in terms of available theories (Q22), which suggests that

292

Online Questionnaires

these researchers follow a more descriptive analysis, simply reporting their
observations without making the effort to link it with underlying mechanisms.
Applying the chi-square test, we corroborated that the first two practices (Q22 and
Q23) are usually applied by senior researchers (p=0,004) but not by PhD students
(p=0,04).

Figure 8. Result analysis practices

Prior questions dealt with what researchers do commonly when they analyze their
results. However, it is also interesting to know more about the perceived usefulness
on the recommended practices included in this section. Table 6 shows the results on a
5-point Likert scale of the perceived usefulness for the practices Q27.1-Q27.5. The
results show that the participants mostly consider useful or very useful all the
practices recommended in order to improve result analysis.

Table 6. Perceived usefulness of practices recommended for obtaining better
empirical reports

 Perceived Usefulness

Question 1
(not useful)

2 3
(neutral)

4 5
(very useful)

Q27.1 2.8% 0.0% 5.6% 30.6% 61.1%

Q27.2 2.9% 0.0% 17.6% 23.5% 55.9%

Q27.3 0.0% 3.0% 9.1% 21.2% 66.7%

Q27.4 6.1% 0.0% 9.1% 27.3% 57.6%

Q27.5 0.0% 0.0% 6.1% 36.4% 57.6%

293

REFSQ 2012 Empirical Track Proceedings

4 Summary and Conclusions

Context of empirical research: The definition of improvement goals appears to be a
common practice but only among senior researchers. A possible generalization is
that the ability to put research in a wider, practical context, tends to be absent in
PhD researchers but grows with experience. On the other hand, the definition of
knowledge goals and review of the current state of empirical knowledge is common
practices among both senior researchers and PhD students. Our respondents
perceived these recommended practices as useful.
The research problem: Our respondents do formulate research questions and
describe the population to be investigated. Definition, operationalization and
validation of a conceptual framework was less widely practiced. About 26% of our
respondents did not perceive operationalization or validation of concepts as useful.
This could indicate a lack of theory usage in RE research. A possible explanation is
that these two practices are not currently required for publishing empirical research.
Research design and justification. Most of our respondents justified the
representativeness of the object of study, and specified and validated measurement
instruments and procedures. Justification of ethical issues and justification of
inferences techniques were not widely practiced.
Research execution. PhD students agreed that it is necessary to report what actually
happened during research. Some of the senior researchers did not understand what
was meant. We have no explanation for this.
Results analysis. The majority of PhD Students do not usually explain their
observations in terms of underlying mechanisms or available theories.
Overall, respondents tended to give greater importance to practices in results
analysis than to practices in research design. Since analysis must be based on
proper design, this points to an important improvement possibility of empirical RE
research practice.

5 Acknowledgments

This work was in part funded by the Intra European Marie Curie Fellowship Grant
50911302 PIEF-2010. The authors would like also thank all the participants of this
survey.

References

1. Wieringa, R.J. (2012) A Unified Checklist for Observational and Experimental Research
in Software Engineering (Version 1). TR-CTIT-12-07, CTIT, UT, Enschede. ISSN 1381-
3625

2. Wieringa R. J. Design science as nested problem solving. ACM 4 the DESRIST, 2009 ,
pp. 1–12.

3. Kitchenham, B.A., Pfleeger, S.L.: Principles of Survey Research - Part 3: Constructing a
Survey Instrument. SIGSOFT Software Engineering Notes 27, 20–24 (March 2002).

294

Online Questionnaires

4. Pfleeger S., “Experimental design and analysis in software engineering,” Annals of
Software Engineering, vol. 1, no. 1, pp. 219–253, 1995.

5. Kitchenham B. A., Pfleeger Sh. L., Pickard L. M., Jones P. W., Hoaglin D. C., El Emam
K., and Rosenberg J. Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 2002, pp. 721-734.

6. Jedlitschka A., Pfahl D., "Reporting guidelines for controlled experiments in software
engineering," IEEE ISESE 2005, pp.94-104.

7. Runeson P. and Höst M. 2009. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engineering. 14(2), 2009, pp. 131-164.

8. Moher D., Hopewell S., Schulz K., Montori V., Gøtzsche P.C., Devereaux P.J., Elbourne
D., Egger M., and Altman D.G. (for the CONSORT Group). CONSORT 2010 Explanation
and Elaboration: updated guidelines for reporting parallel group randomised trial. British
Medical Journal 2010, pp. 340-c869.

9. Wieringa, R.J. and Maiden, N.A.M. and Mead, N. and Rolland, C. (2006) Requirements
engineering paper classification and evaluation criteria: A proposal and a discussion.
Requirements Engineering, 11 (1). pp. 102-107.

10. Condori-Fernandez N., Wieringa R., Daneva M., Mutschler B., Pastor O. Evaluation of a
checklist for designing empirical research and reporting about it. March 2012. Submitted.

11. Condori-Fernandez N., Daneva M., and Wieringa R. A survey on empirical requirements
engineering research practices. TR-CTIT-12-10, CTIT, UT, Enschede. ISSN 1381-3625

12. Surveygizmo. Online Survey Software & Questionnarie tool (2005). Retrieved 24 April
2012, Web site: http://www.surveygizmo.com/

13. The Ruhr Institute for Software Technology, Universität Duisburg-Essen, 18th
International conference on Requirements Engineering: Foundation for software quality
(2012). Retrieved 24 April, 2012, Web site: http://www.refsq.org/2012/

295

REFSQ 2012 Empirical Track Proceedings

Preliminary Results of a Survey on Requirements
Engineering for variability-intensive Software Systems

Christian Manteuffel, Matthias Galster, Paris Avgeriou

University of Groningen, The Netherlands

c.manteuffel@student.rug.nl, m.r.galster@rug.nl, paris@cs.rug.nl

Abstract. Context: The success of requirements engineering (RE) methods
depends, among others, on the domain and characteristics of the domain in
which they are applied. One particular domain is the domain of variability-
intensive systems. Objective: Variability affects the whole software
development process, including RE. Thus, we aim at understanding RE in the
context of variability-intensive systems. Method: We conducted a survey at
REFSQ 2012 using an online questionnaire. Results: We analyzed data from 23
respondents. We found that even though respondents consider variability
important, there are still many issues when dealing with it. Also, current RE
methods seem not appropriate to properly handle variability during RE.
Conclusions: New approaches to support handling variability should not only
focus on one RE activity, but cover all RE activities. Furthermore, to better
understand RE in the context of variability-intensive systems, more industrial
software projects should be studied, beyond general surveys with practitioners.

1 Motivation

Variability is the ability of a software system or artifact to be changed (e.g., extended,
customized or configured) for use in a specific context. To enable variability, certain
parts of the system are not fully defined during early iterations, but later when, for
instance, more details about a concrete customer are known. For example, during
early iterations we might identify what parts of a system should be variable (e.g., in
terms of “variation points”) and what the options are to resolve variability (e.g., in
terms of “variants”). Later, we decide how to actually resolve this variability and what
variant to choose. This means, variability can be interpreted as planned or anticipated
change, or as “planned” requirements uncertainty.

Variability imposes challenges on the whole software development process,
including requirements engineering (RE) as it affects functional and non-functional
requirements. Variability is an important concern during RE and a key fact of most, if
not all, systems [7]. Examples of variability-intensive systems include systems for
which design decisions are deferred to when more details about concrete customer
requirements are known, highly configurable single systems, systems that support
multiple deployment / operation and / or maintenance scenarios, product lines, open

296

Online Questionnaires

platforms, self-adaptive systems, or service-based systems that support dynamic
runtime composition of web services [16].

RE in the context of variability has mainly been addressed in the domain of
software product lines [1]. For example, industrial challenges with variability
management in product lines (e.g., handling complexity or extracting required
variability) have been identified [3]. General RE challenges in the context of large-
scale systems were studied in [12], but no industrial studies on RE in the context of
variability-intensive systems exist. Furthermore, existing RE methods lack the ability
to anticipate change [13]. In RE, change is often anticipated after documentation [15]
rather than as part of requirements elicitation or analysis. To reduce the impact of
variability on different parts of a software system and on different software
development artifacts, change should be anticipated during requirements elicitation
[13]. Finally, there are no empirical studies on the applicability of existing approaches
in the context of RE that anticipate change in real-world projects [13]. In particular,
an understanding of challenges that occur during RE for variability-intensive
industrial systems is missing. Therefore, this paper reports results of a survey
conducted at REFSQ 2012 that aimed at understanding RE in the context of
variability-intensive software systems. The survey included participants from industry
and academia.

The rest of this paper is organized as follows. In Section 2 we discuss related work.
Section 3 presents the design of the survey. In Section 4 we present the results and
Section 5 acknowledges threats to validity. The paper ends with conclusions and
directions for future work in Section 6.

2 Related Work

Chen et al. performed a systematic literature review on variability management
approaches [4]. They found that the majority of research on variability management in
product lines covers variability during RE but in general existing approaches for
variability management lack validation [4]. Another systematic literature review
assessed the current state and quality of research on RE for product lines. It found that
current studies are limited in terms of validity, and lack sufficient guidance for
practitioners, which limits the use in industrial settings. The review concludes that
more effort should be invested in tool support and guidance to adopt methods in
practice [19].

Furthermore, challenges and issues with variability have been identified. While
Chen et al. separate technical challenges (e.g., handling complexity) and non-
technical challenges (e.g., people and mindset) [3], Jaring and Bosch identified three
major issues: variability identification, variability dependencies and the lack of tool
support [8].

Nolan et al. evaluated the impact of unmanaged requirements uncertainties in later
phases of a software project. The authors discuss a method to analyze requirements
uncertainties during RE. They found that for a “traditional non-product line project,
over 80% of requirements uncertainty can be predicted at project launch” [14].

297

REFSQ 2012 Empirical Track Proceedings

3 Design of the Study

3.1 Goal

The goal of the survey is to contribute to an understanding of RE in the context of
variability-intensive systems. Therefore, we conduct a survey to collect information
from practitioners and researchers on the role of variability during RE and how
variability is handled. Based on the study goal, we define four research questions:

 RQ1 How important do practitioners and researchers consider variability as a

concern during RE for variability-intensive systems?
 RQ2 What concerns do requirements engineers have with regard to handling

variable requirements during RE?
 RQ3 Which RE activities are affected most by variability?
 RQ4 What methods are most promising to handle variable requirements during RE?

We ask RQ1 because variability is often one concern among many other concerns

(e.g., other non-functional requirements). Thus, we are interested in finding out how
variability is perceived in comparison to other concerns. This question is of interest
for researchers and practitioners.

We ask RQ2 because requirements engineers face difficulties when dealing with
variability. We are interested in finding out what these difficulties are with regard to
RE. This helps researchers develop new approaches to support RE practitioners. By
asking this question also to researchers we can complement our results obtained from
practitioners: Researchers usually have a broad overview of the state-of-the-art in a
certain area and therefore might have different insights into problems with handling
variability.

We ask RQ3 because variability has an impact on the whole software development
process, including RE. To get a more detailed understanding of the effect of
variability on RE, we study how variability affects requirements elicitation, analysis
and negotiation, documentation, validation, etc. This question is interesting for
researchers and practitioners.

We ask RQ4 because we want to identify good practices for RE for variability-
intensive systems. This question is interesting for practitioners who want to reuse
good practices, but also for researchers to understand the current state-of-practice.
Researchers often have an overview of existing RE methods to handle variability.
Thus, this question also helps identify differences in the perceptions of researchers
and practitioners.

3.2 Subjects and Sampling

The population under study are RE practitioners and researchers. The population is
restricted to respondents with experience in the field of variability and RE. This
means, subjects were required to have research or industry experience with

298

Online Questionnaires

variability-related topics, such as product lines, reference architectures, or self-
adapting systems. Given that the study was conducted at REFSQ, the population was
not limited in terms of years of experience. To find participants we used purposive
sampling [6] and encouraged attendees of REFSQ 2012 to participate in the survey.

In total, 24 responses were collected, out of which one was incomplete and thus
was excluded from the results. Of the remaining 23 responses, 17 participants had
experience in the software industry. On average the participants had eight years of
industrial experience (minimum 0.5 years and maximum 45 years). Twenty-two
participants had experience in academic research. On average, participants spent 7.5
years on RE research and 2.3 years on research related to variability. Twenty-one
participants had received some sort of training related to RE and 14 participants had
received training related to handling variability throughout their career. Out of 23
participants, eight answered survey questions from a practitioner’s perspective, the
rest from a researcher’s perspective. In contrast to the researcher’s perspective, the
practitioner’s perspective included questions about the organization in which
respondents were working (see Section 3.3).

3.3 Data Collection

Data were collected through a self-administered online questionnaire. The reason for
using an online questionnaire was that multiple subjects could answer the
questionnaire concurrently. Furthermore, a self-administered questionnaire has the
advantage that subjects and researchers do not have to synchronize time and place and
that participants could fill in the questionnaire independent from researchers. Also, an
online questionnaire avoids introducing errors in data that could occur when manually
entering data into computer systems from paper-based questionnaires. In order to
avoid poorly phrased questions, we piloted the questionnaire with subjects from the
target population. We revised the questions based on their feedback and comments.

The questionnaire included structured questions and unstructured questions.
Structured questions could be answered using Likert-scale or pre-defined answer
options [9], unstructured questions allowed numeric answers or free text. For some
questions, more than one answer could have been applicable (e.g., role of
participants). In this case, participants could choose the answer that describes their
role, etc. best. Furthermore, for most questions we allowed participants to provide
additional comments to complement their answer, and to skip questions if they did not
feel comfortable answering it. The actual questions of the questionnaire are provided
in Section 4 when we discuss the results.

As we addressed both practitioners and researchers, we added an additional set of
questions about the organization of participants that answered questions from a
practitioner’s perspective. For example, we asked questions about the domain,
company size, etc. This was to ensure that we covered a broad range of industrial
experiences. Practitioners worked in small to large organizations and had various
roles, including project managers, requirements engineers, etc. Furthermore, industrial
participants came from many different domains. However, as only eight participants
answered the questions from a practitioner’s perspective, we were not able to
determine relationships between company size, domain, role of participants, etc. and

299

REFSQ 2012 Empirical Track Proceedings

the answers participants from industry gave. Practitioners were asked to answer the
questions based on their practical experience. This resulted in two paths, which were
controlled by a check-question to find out if a participant was from industry or
research. The structure of the questionnaire as well as its relation to our research
questions is illustrated in Figure 1.

�������	��
�

���������

Participant’s Profile

��������
����
	�
����
��
����������
������
��
�����

����������
��������
����
–
����

!"���������#

!�������	��#

$�����%����&������
��������

��������
����
	�'
����������
��
�����
������
��
���()
��*)����

��������
����
��
��������
��
	�
����+
��
����������
���(�

Fig. 1. Flow of questions in the questionnaire.

The questionnaire was available from March 19, 2012 to March 30, 2012. This
includes the time of the REFSQ conference plus one week after the conference.
During the conference 18 people participated in the survey. In the week after the
conference, six people filled in the questionnaire.

4 Analysis

We used descriptive statistics to analyze the data [10]. The diagrams in this section
show a stacked bar representing the percentage or the absolute number of answers to
the respective questions. The label on the bars shows the absolute number of answers
according to the participant’s background.

4.1 RQ1 – Importance of Variability

We asked participants about the importance of variability in the context of RE.
Answers were provided in a three-point scale. As illustrated in Figure 2, more than
70% of participants reported that variability is very important in the context of RE.

300

Online Questionnaires

Less than 30% of the participants rated variability moderately important, while no
respondent considered variability as unimportant. The answers show a clear trend that
variability is an important concern, especially for participants with a background in
research.

I don't knowVery importantModerately
important

Unimportant

P
e

rc
e

n
t

80.0%

60.0%

40.0%

20.0%

0.0%

1 3

2

4

4

00

I don't
know

Strongly
agree

AgreeIndifferentDisagreeStrongly
disagree

P
e

rc
e

n
t

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%
1

3

1

9

1

1

2

4

1

Fig. 2. Frequencies of answers to question
“How important do you think is variability in
the context of RE”.

Fig. 3. Frequencies of answers to question
“Based on your experience, how would you
rate the following statement: During RE
variability is usually strictly and explicitly
managed.”

We also asked if participants agree or disagree with the statement that variability is
usually strictly and explicitly managed during RE. The majority of participants
disagreed or strongly disagreed (65%) with the statement (Figure 3). Three
participants were indifferent (13%), while five participants agreed with the statement
(21%). There is no major difference between responses of participants from academia
and participants from industry.

Summary of RQ1: Based on the responses we obtained from REFSQ participants,
we conclude that even though variability is considered important, it is not sufficiently
handled during RE.

4.2 RQ2 – Concerns regarding Variability

For the second research question, we asked participants about challenges and issues
with respect to handling variability during RE. Participants were asked to select
multiple requirement characteristics (e.g. modifiability, completeness) that are more
difficult to achieve in the presence of many variable requirements. As depicted in
Figure 4, consistency was selected most frequently (>80%), followed by traceability
and completeness (both > 50%). All other characteristics were mentioned by less than
50% of the participants. There is no noteworthy difference between academic

301

REFSQ 2012 Empirical Track Proceedings

researchers and practitioners, except for testability, which has been selected by ten
researchers but only by one practitioner. This could be an indication that testability is
more of an academic problem rather than a problem faced by practitioners in real
projects.

[N
o

n
e]

[I d
o

n
t' kn

o
w

]

[S
o

lu
tio

n
 freen

ess]

[N
ecessity]

[M
o

d
ifiab

ility]

[U
n

am
b

ig
u

o
u

sn
ess]

[R
ead

ab
ility]

[U
n

d
erstan

d
ab

ility]

[V
erifiab

ility]

[T
estab

ility]

[C
o

m
p

leten
ess]

[T
raceab

ility]

[C
o

n
sisten

cy]

C
o

u
n

t

2 0

1 5

1 0

5

0

1 0

3
4

6

3
2

1 2

7
9

8

5

4
2

3
3

7

5

4

2

3

1

1

Research
Industry

Participant's
Background

Fig. 4. Frequencies of the answers to question “Which requirements characteristics do you
think are more difficult to achieve in the presence of many variable requirements?”

Furthermore, we asked about the most pressing technical issues when dealing with
variability. This question also allowed multiple responses. As illustrated in Figure 5,
the majority of participants (56%) mentioned handling complexity as most pressing
technical issue. Ten out of 23 participants selected consistency management,
extracting variability, knowledge harvest and management, and identifying
commonalities and variabilities.

We asked the same question for non-technical issues, as illustrated in Figure 6. The
two most mentioned issues are mindset-change (65%) and people (61%). The three
other options were selected by less than 35%.

Furthermore, we asked the participants about the sufficiency of validation methods
to validate variability in requirements, their satisfaction with current ways to specify
variability in requirements, and the capability of RE methods to deal with variability.
The answers to these questions do not show a clear trend (Figure 7 and 9). However,
Figure 8 shows that the majority of participants agreed that ways of specifying
variability are often unsatisfactory.

Summary of RQ2: Concerns related to handling variable requirements during RE
include a) ensuring consistency of requirements despite variability, b) coping with
complexity, c) ensure the right mindset of people involved, and d) have methods
available to support specifying variability in requirements.

302

Online Questionnaires

[Handling complexity]

[Consistency management]

[Extracting variability]
[Knowledge harvest and management (e.g., of

variability information and its management
throughout RE)]

[Identifying commonalities and variabilities]

[Variability modeling and documentation]

[Traceability between requirements and
variability models]

[Evolution of variability]

[Integration of variability analysis in RE]

[Tool support]

[Product derivation]

[Scalability of existing approaches to handle
variability in requirements]

[Process support]

[Testing]

Count

1 51 050

5

4

6

5

5

7

6

5

1

2

5

2

2

9

3

2

4

2

1

3

4

5

2

1

1

4

4

Research
Industry

Participant's
Background

Fig. 5. Frequencies of the answers to question “What do you think are the most pressing
technical issues when dealing with variability?”

[Mindset change (e.g., to think beyond one
single product but in terms of multiple

products)]
[People (e.g., the need for skilled

requirements engineers and architects to
deal with variability)]

[Management support (e.g., to scope
products well enough, without loosing

focus)]
[Organizational structure of software

vendors (e.g., different teams for variabile
and constant requirements)]

[Business models of software vendors (e.g.,
selling one product versus selling a product

that can be adapted)]

Count

1 51 050

2

4

5

9

1 0

1

3

6

4
Research
Industry

Participant's
Background

Fig. 6. Frequencies of answers to question “What do you think are the most pressing non-
technical issues when dealing with variability during RE?”

303

REFSQ 2012 Empirical Track Proceedings

I don’t
know

AlwaysOftenSometimesRarelyNever

P
e

rc
e

n
t

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

3

1

6

4

1

2

1

1

0

0

0

Research
Industry

Participant's
Background

Fig. 7. Frequencies of the answers to question “Based on your experience, how would you rate
the following statement: Current validation methods are sufficient to validate variability
requirements during RE.”

I don’t
know

Strongly
agree

AgreeIndifferentDisagreeStrongly
disagree

P
e

rc
e

n
t

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%
1

1 0

3

1

4

2

1

1

00

I don’t
know

Strongly
Agree

AgreeIndifferentDisagreeStrongly
disagree

P
e

rc
e

n
t

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

2

4

6

3

1

4

2

1

0

0

Fig. 8. Frequencies of the answers to
question “Based on your experience, how
would you rate the following statement:
Ways of specifying variability in
requirements are often unsatisfactory.”

Fig. 9. Frequencies of the answers to
question “Based on your experience, how
would you rate the following statement:
Existing RE methods are capable of dealing
with variability and variability in
requirements”

304

Online Questionnaires

4.3 RQ3 – RE Activities affected by Variability

Figure 10 shows the frequencies related to identifying RE activities that are affected
by variability in requirements. The answers show that all RE activities are affected.
Each activity has been selected by more than 50% of the participants with a high
evidence for maintenance and elicitation (> 80%). In summary this means that there is
not one single RE activity that requires special attention when handling variability.

[Maintenance / evolution]

[Elicitation / description]

[Negotiation]

[Analysis]

[Test case generation]

[Validation / verification]

[Documentation / specification]

[None]

[I don't know]

Count

2 01 51 050

1 3

1 3

1 2

8

1 1

1 3

1 4

7

5

4

5

8

6

6

Fig. 10. Frequencies of the answers for question “What RE activities are affected by variability
in requirements?”

4.4 RQ4 – Methods promising to handle Variability

All questions regarding RQ4 were multiple-choice. As illustrated in Figure 11, Goal-
oriented RE is considered to be most promising for handling variability in
requirements (60%), followed by use-case-based RE (35%). The answers show a
tendency towards goal models as preferred modeling language (40%, Figure 12). As
goal models are widely used in RE, many researchers and practitioners are familiar
with them. This could be an explanation why documentation and specification are not
significantly affected by variability (see Section 4.3). Figure 12 also shows that none
of the modeling languages is favored by the majority of participants.

Figure 13 shows that 52% of the participants consider requirements inspections as
applicable to check variability requirements. Informal desk checks were selected in
nine out of 23 cases. However, if practitioners and researchers are analyzed
individually, informal desk checks were selected by 62.5% of the practitioners while
requirement inspections were chosen by 37.5%.

Summary of RQ4: Goal-oriented requirements engineering including goal models
to describe variability, and requirements inspections including desk checks for
requirements verification and validation seem to be a good practice to handle variable
requirements during RE.

305

REFSQ 2012 Empirical Track Proceedings

[Goal-oriented RE]

[Use-case-based RE]

[I don't know which approach (mentioned
or not mentioned above) is most

promising]

[Essential system analysis]

[I don't know any of these]

[Scenario-based RE]

[Structured analysis]

Count

1 51 050

3

1

6

1 1

1

1

3

2

1

3

1

Research
Industry

Participant's
Background

g y q g

Fig. 11. Frequencies of the answers for question “What RE analysis approaches do you
consider most promising for handling variability in requirements during RE?”

[Goal models]

[UML / SysML]

[Sequence diagrams]

[Component diagrams]

[State machines]

[Use case diagrams]

[None]

[Activity diagrams]

[I don't know]

[Block diagrams]

[Requirement diagrams]

[Class diagrams]

Count

1 086420

2

2

3

3

3

3

3

2

1

8

4

1

1

2

2

1

1

3

1

2

Fig. 12. Frequencies of the answers for question “What modeling languages are usually used to
model variability in requirements?”

306

Online Questionnaires

[Formal
validation /
verification

using
formalisms]

[Automatic
consistency

checks]

[I don't know][Informal
desk-checks]

[Requirements
inspections]

C
o

u
n

t

1 2

1 0

8

6

4

2

0

3
44

9
2

5

3 Research
Industry

Participant's
Background

Fig. 13. Frequencies of the answer for question “What requirements validation and verification
methods can be applied to check variability requirements?”

5 Threats to Validity

Internal validity: Internal validity is about confounding variables and other sources
that could bias our results [11]. When designing surveys, variables are difficult to
control [5], in particular when using online questionnaires. To control variables,
exclusion or randomization can be applied [17]. Exclusion means that participants
who are not sufficiently experienced were excluded from the study. We ensure this by
having a check question that only allows participants with some sort of practical
experience to proceed with the questionnaire. Randomization means that we used a
sampling technique that lead to random participants from REFSQ. Furthermore,
validity is subject to ambiguous and poorly phrased questions. To mitigate this risk,
we piloted the questionnaire multiple iterations to ensure that potential respondents
understand our questions and intentions. Also, the complete survey protocol was
reviewed by several external researchers. Another limitation is that participants not
answer truthfully to the questions [17]. To address this problem, we made
participation voluntary and anonymous. As participants spent personal time on
answering the questionnaire we assume that those who volunteered to spend time
have no reason to be dishonest [17].

External validity: External validity is concerned with the problem of generalizing
the results to the target population. We assume that our results are applicable to a
population that meets the sampling criteria of our survey (i.e., practitioners and
researchers with experience in RE and variability). However, answers are not just
influenced by the understanding of participants, but also the characteristics of
companies, domains and software projects in which participants had worked. This
information was recorded as part of the questionnaire. Furthermore, we only had a
limited number of participants. In particular, participants at REFSQ were primarily
RE researchers rather than practitioners. This means, we received a significant
amount of responses from researchers and only a small amount of responses from
practitioners. Therefore, we could not identify statistically significant relationships
between the background of practitioners and the answers they gave.

307

REFSQ 2012 Empirical Track Proceedings

6 Conclusions and Future Work

We presented a summary of the results obtained from a survey on RE for variability-
intensive systems, conducted at REFSQ 2012. Our results indicate that even though
variability is considered important, there are still many problems when dealing with
it. This confirms other findings, which state that even though there has been research
on change management in RE, change management is still a challenging task [18].
We also found that variability is a concern that is considered important by researchers
and practitioners, rather than variability just being an academic problem. This means,
special consideration should be given to variability RE practice. However, despite its
significance, variability is not strictly managed. Another finding is that consistency is
difficult to achieve in the presence of variability. This is probably due to the
complexity induced by variability, which is supported by our finding that handling
complexity is considered to be the most pressing technical issue when dealing with
variability.

Furthermore, we found that a mindset change and the necessity for trained and
skilled people are the most pressing non-technical issues. As already discussed in [3],
those non-technical issues have also not been addressed by existing variability
management approaches. Our study showed that this is also true for handling
variability during RE.

The study showed that Goal-oriented RE methods are considered promising for
handling variability during RE. Correspondingly, we found that goal models are
considered to be a suitable modeling technique to model variability, while UML and
other modeling techniques were less popular. This supports our finding that
specification methods are often unsatisfactory when dealing with variability.
Especially participants from industry have indicated that they are unsatisfied with
existing specification methods. This has also been reported in [3].

With regards to validation and verification methods, we found that participants
from academia favored requirements inspections to check variability requirements,
while participants from industry considered informal desk-checks as more applicable.
This is an indicator that practitioners are more in favor for less formal and ad-hoc
specification methods.

The survey’s findings can be a starting point for further research. For example,
since we received only a small amount of responses from practitioners, the survey
should be repeated to include more responses from practitioners. Also, future work to
study RE for variability-intensive systems should investigate RE in real software
projects. Furthermore, new approaches to support variability during RE should not
focus on only one RE activity, but, if possible cover all activities.

Acknowledgments. We would like to thank all respondents of the survey for their
participation. Furthermore, we thank the organizers of the REFSQ 2012 Empirical
Track for their support in conducting the study. We also thank Sara Mahdavi
Hezavehi, David Ameller, Klaas Jan-Stol, Dan Tofan, and Uwe van Heesch for their
feedback on this study. This research has been partially sponsored by NWO SaS-LeG,
contract no. 638.000.000.07N07.

308

Online Questionnaires

References

1. Alves, V., Niu, N., Alves, C., and Valenca, G. 2010. Requirements Engineering for
Software Product Lines: A Systematic Literature Review. Information and Software
Technology 52, 8 (August 2010), 806-820.

2. Basili, V., Caldiera, G., and Rombach, D. 1994 The Goal Question Metric Approach. In
Encyclopedia of Software Engineering, J. J. Marciniak, Ed. John Wiley & Sons, New York,
NY, 528-532.

3. Chen, L. and Babar, M. A., "Variability Management in Software Product Lines: An
Investigation of Contemporary Industrial Challenges," in 14th International Software
Product Line Conference Jeju Island, South Korea: Springer Verlag, 2010, pp. 1-15.

4. Chen, L., Babar, M. A., and Ali, N., "Variability Management in Software Product Lines: A
Systematic Review," in 13th International Software Product Line Conference (SPLC) San
Francisco, CA: Carnegie Mellon University, 2009, pp. 81-90.

5. Ciolkowski, M., Laitenberger, O., Vegas, S., and Biffl, S. 2003 Practical Experiences in the
Design and Conduct of Surveys in Empirical Software Engineering. In Empirical Methods
and Studies in Software Engineering, R. Conradi and A. I. Wang, Eds. Springer Verlag,
Berlin / Heidelberg, 104-128.

6. Creswell, J. W. 2002. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. In Proceedings of (Thousand Oaks, CA). 246.

7. Hilliard, R., "On Representing Variation," in Workshop on Variability in Software Product
Line Architectures Copenhagen, Denmark: ACM, 2010, pp. 312-315.

8. Jaring, M. and Bosch, J., "Representing Variability in Software Product Lines: A Case
Study," in Second Software Product Line Conference San Diego, CA: Springer Verlag,
2002, pp. 15-36.

9. Kitchenham, B. and Pfleeger, S. L. 2002. Principles of Survey Research - Part 3:
Constructing a Survey Instrument. ACM SIGSOFT Software Engineering Notes 27, 2
(March 2002), 20-24.

10. Kitchenham, B. and Pfleeger, S. L. 2003. Principles of Survey Research - Part 6: Data
Analysis. ACM SIGSOFT Software Engineering Notes 28, 2 (March 2003), 24-27.

11. Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K.
E., and Rosenberg, J. 2002. Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering 28, 2 (August 2002), 721-734.

12. Konrad, S. and Gall, M., "Requirements Engineering in the Development of Large-scale
Systems," in 16th IEEE International Conference on Requirements Engineering Catalunya,
Spain: IEEE Computer Society, 2008, pp. 217-222.

13. Lim, S. L. and Finkelstein, A. 2011 Anticipating Change in Requirements Engineering. In
Relating Software Requirements and ArchitecturesSpringer Verlag, Berlin / Heidelberg, 17-
34.

14. Nolan, A. J., Abrahao, S., Clements, P., and Pickard, A., "Managing Requirements
Uncertainty in Engine Control Systems Development," in 19th IEEE International
Conference on Requirements Engineering Trento, Italy: IEEE Computer Society, 2011, pp.
259-264.

15. Sommerville, I. and Sawyer, P. 1997. Requirements Engineering - A good practice guide.
John Wiley & Sons, New York, NY.

16. van Gurp, J. and Bosch, J., "Proceedings of the Software Variability Management
Workshop," J. van Gurp and J. Bosch, Eds. Groningen, The Netherlands, 2003, p. 142.

17. van Heesch, U. and Avgeriou, P., "Mature Architecting - A Survey about the Reasoning
Process of Professional Architects," in 9th Working IEEE/IFIP Conference on Software
Architecture Boulder, CO: IEEE Computer Society, 2011, pp. 260-269.

309

REFSQ 2012 Empirical Track Proceedings

18. van Lamsweerde, A. 2009. Requirements Engineering: From System Goals to UML Models
to Software Specifications. John Wiley & Sons, West Sussex, England.18. van

19. A. Vander, N. Niu, C. Alves, and G. Valença, “Requirements engineering for software
product lines: A systematic literature review,” Information and Software Technology, vol.
52, no. 8, Aug. 2010.

310

Online Questionnaires

10�Empirical�Research�Fair�

Online�Questionnaires�Programme�

� Tracing�Requirements�Interdependencies�in�Agile�Teams�
Indira�Nurdiani,�Samuel�Fricker,�and�Jürgen�Börstler�

312

� What�do�you�expect�from�Requirements�Specifications?�An�Empirical�Investigation�of�
Information�Needs�
Anne�Gross�

314

� Applying�creativity�techniques�to�requirements�elicitation:�defining�an�enhanced�
EPMCreate�
Luisa�Mich,�Daniel�Berry,�and�Victoria�Sakhnini�

316

� Supporting�Client�Developer�Feedback�Loops�in�Agile�Requirements�Engineering�by�means�
of�a�Mobile�RE�Tool�
Maya�Daneva,�Nelly�Condori�Fernandez,�and�Norbert�Seyff�

318

� Using�E�mails�and�Phone�Calls�to�Resolve�Requirements�Engineering�Issues:�Which�Works�
Best�and�for�Which�Type�of�Issue?�
Maya�Daneva�

320

� Patterns�of�Requirements�related�Communication�
Eric�Knauss,�and�Daniela�Damian�

322

� Requirements�Elicitation�Driven�by�End�Users�
Alessia�Knauss,�and�Daniela�Damian�

323�

� �

REFSQ 2012 Empirical Track Proceedings

311

Tracing Requirements Interdependencies in Agile Teams

Indira Nurdiani, Samuel Fricker, and Jürgen Börstler

Blekinge Tekniska Högskola, School of Computing, SE-371 79 Karlskrona, Sweden

{indira.nurdiani,samuel.fricker,jurgen.borstler}@bth.se

1 Proposed Study

1.1 Background and Aim

The pressure of delivering a software product in timely manner and rapid requirement

changes have driven many software organizations to adopt a solution that allows them

to be more flexible in adapting to changes. Agile Methodology (AM) is a software de-

velopment approach that tries to address the rigidity of traditional plan-driven methods.

AM focuses on delivering working software on time through short and iterative devel-

opment cycles. Changes to requirements are also accepted even at later stages of the

development [1].

In AM, requirements are implemented in releases based on prioritization of financial

value, cost, uncertainty, and risks [3]. However, practitioners find results from priori-

tization to be untrustworthy [5]. Requirements prioritization is further challenged by

interdependencies between requirements [4]. Managing requirements interdependen-

cies, which is an important aspect in incremental development [2], is a missing piece in

AM [8].

The aim of this study is to explore the perception from agile teams regarding re-

quirements interdependencies and uncover in-situ practices for handling those inter-

dependencies. We want to study the practices that are in place from the development

team point of view with ethnomethodological approaches, utilizing observations and

interviews as data collection methods [6]. Through ethnomethodology we can uncover

social and other aspects that can provide insights toward focused development effort

improvement, as demonstrated in [7].

1.2 Expectations on Industrial Partners

We are interested in studying existing practices and techniques with respect to trac-

ing requirements interdependencies in agile teams. The observation will be done un-

obtrusively during iterations at different phases of a project: close to the beginning,

halfway through, and close to the end. We would also like to observe requirements re-

lated artefacts, i.e., backlogs, bulletin board, drawings on whiteboards, etc. The study

also includes interviews with team members with various roles. Organization’s and team

members’ names will be anonymized for confidentiality purposes.

From this study we want to uncover practices that contribute to requirements in-

terdependencies management. By gaining this knowledge, we can identify issues per-

taining to tracing interdependencies between requirements. Furthermore, we can un-

cover and retain ’good practices’ that may have been overlooked in the development

312

Empirical Research Fair

�

�

�

�

�

Agile

Team

Culture

Techn.�
Aspects

DomainProduct

Practices

Dev.�
Artefacts

Fig. 1. Aspects to study.

team. Lastly, we want to propose an improvement initiative to support traceability of

requirements interdependencies which in turn can improve requirements prioritization

and release planning activities.

Acknowledgment. This work is part of the BESQ+ research project funded by the

Knowledge Foundation (grant: 20100311) in Sweden.

References

1. L. Cao and B. Ramesh. Agile requirements engineering practices: An empirical study. IEEE
Software, 25(1):60–67, 2008.

2. P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An industrial survey

of requirements interdependencies in software product release planning. In Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pages 84 –91, 2001.

3. M. Cohn. Agile Estimating and Planning. Prentice Hall, Upper Saddle River, NJ, USA, 2006.
4. A. s. Dahlstedt and A. Persson. Requirements Interdependencies: State of the Art and Future

Challenges. In Engineering and Managing Software Requirements, pages 95–116. 2005.
5. L. Lehtola and M. Kauppinen. Suitability of requirements prioritization methods for market-

driven software product development. Software Process: Improvement and Practice, 11(1):7–

19, 2006.
6. Lisa M. Given. SAGE Encyclopedia of Qualitative Research Methods, volume 1&2. SAGE,

USA, 2008.
7. K. Rönkkö. ”Yes – What Does That Mean?” Understanding Distributed Requirements Han-

dling. In Social Thinking - Software Practice, pages 223–241, Cambridge, MA, United states,

2002. MIT Press.
8. G. Schalliol. Challenges for Analysts on a Large XP Project. In M. Marchesi, G. Succi,

D. Wells, and W. Laurie, editors, Extreme Programming Perspectives. Addison Wesley Pub-

lishing Company, Boston, 2002.

313

REFSQ 2012 Empirical Track Proceedings

What do you expect from Requirements Specifications?
An Empirical Investigation of Information Needs

Anne Gross

Fraunhofer IESE, 67663 Kaiserslautern, Germany
Anne.Gross@iese.fraunhofer.de

Introduction

Requirements specifications (RS) play a crucial role in software development
projects as these documents serve as a source of information for a variety of roles
involved in downstream activities like architecture, design, and testing. However, this
fact poses a challenge to a requirements engineer that is responsible to create these
specifications: different information needs and expectations have to be addressed that
are strongly dependent on the particular role that the document stakeholders have
within a project. For example, an architect requires detailed knowledge about quality
and data requirements as well as technical constraints to derive appropriate
architectural decisions. On the other hand, a user interface designer requires detailed
information regarding characteristics of end users as well as interaction descriptions
as this information has a tremendous influence on design decisions.

Today’s requirements engineering approaches do not explicitly address these “role-
specific” information needs. Often RS contain much more information than actually
required by a certain role to perform his/her tasks. Or relevant information is hard to
find and analyze in a specification as it is distributed over different sections or even
different documents. Or important information is even missing. Such observations of
inappropriate documentation do negatively influence an efficient and effective usage
of RS as the analysis of these documents becomes time-consuming and frustrating for
the document stakeholders. In the worst case, this could result in document
stakeholders neglecting or ignoring the RS which finally ends in implementations of
software systems that fail to meet the requirements actually documented in the RS [1].

Research Questions

In order to provide the stakeholders of RS with appropriate documents we claim that
sound and empirically valid knowledge about role-specific information needs is
necessary. That is, suitable studies have to be designed aiming to investigate the
following research questions from the viewpoint of different development engineers:

• RQ1: What are typical artifact types (e.g., stakeholder descriptions, quality
requirements, data requirements) that should be documented in RS?

314

Empirical Research Fair

• RQ2: On what level of detail should artifacts of these types be documented?
• RQ3: Which notation should be used to document the artifacts?

Based on these findings we aim to investigate and analyze differences in the
information needs, in particular:
• RQ4: Is there a difference in the information needs between different roles such as

architect, UI designer, developer, tester?
• RQ5: Is there even a difference between different development engineers with the

same role?

Finally, information needs might also be influenced by certain environmental factors
such as expertise of the development engineers, familiarity with the project domain,
internal processes, motivation, personality, etc. This is reflected in:
• RQ6: What are environmental factors that influence particular information needs?

Once all these research questions have been sufficiently answered, we will be able
to develop suitable solutions that enable an efficient and effective usage of RS (for
example view-based requirements specifications [1] [2]).

But not only consumers of RS will benefit from these results. Also requirements
engineers as authors of these documents can benefit as they can align their elicitation
and specification activities in accordance with the information needs of subsequent
development phases and project plan (i.e., they know WHAT and HOW to specify for
each role and WHEN the role requires the information according to the project plan).

Wanted from Industry

We’d like to encourage practitioners working either as software architects, interaction
/ UI designer, developer, or tester in the domain of information systems to contribute
to the body of knowledge about information needs.
Participation is primarily targeted to investigate research questions RQ1 to RQ3 and
RQ6. That is, the relevance of a given set of artifact types typically specified in the
context of information systems as well as the required level of detail and suitable
notation will be investigated. In addition, information about typical activities and
environmental factors (domain, experience / background, etc.) will be captured. Data
will be collected either in form of a (phone) interview or filling out a questionnaire.
Participation will take max. 2 hours. Experiences gained during such industrial case
studies will be shared among all participants of the studies anonymously.

References

1. S. Adam, N. Riegel, and A. Gross, “Focusing on the “Right” Requirements by
Considering Information Needs, Priorities, and Constraints”, REEW’12

2. S. Schlosser “Tool-Support for Perspective-based Views on Software Requirements
Documents”, Fraunhofer IESE Report 032.12/E, 2012

315

REFSQ 2012 Empirical Track Proceedings

Applying creativity techniques to requirements
elicitation: defining an enhanced EPMCreate

Luisa Micha, Daniel Berryb, and Victoria Sakhninib

aDepartment of Computer and Management Sciences, University of Trento, Italy
luisa.mich@unitn.it

bCheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
dberry@uwaterloo.ca, vsakhnini@ uwaterloo.ca

1 Introduction

Identifying high-level requirements for innovative software systems is a challenge.
Real innovation needs a creative approach to be able to discover also implicit and
unexpected users’ requirements.

A new creativity technique is proposed, based on techniques that focus on different
users’ viewpoints: EPMCreate and POEPMCreate. (For more information about
EPMcreate and POEPMcreate, please consult
<http://www.cin.ufpe.br/~ccte/intranet/creativity/CreativityBerry.pdf> and
<http://www.springerlink.com/content/1833346052m8351g>).

In the new technique, the analyst has to play a role similar to that of a relational
therapist. Requirements engineers and representatives of the different users of a tar-
geted system are invited to follow a multistep process in discussing a first core of
high-level requirements for the system. Each step corresponds to a different relational
style adopted by the chief analyst.

2 Wanted from Industry

As researchers, we are looking for an industrial project that is aiming to develop a
new software system or to innovate an existing one to gain competitive advantage.
The company should provide a seed set of requirements, constraints, and desiderata
that will be used to start the relational requirement session. The goal of this first ap-
plication of the new technique is to test its usability and design in a real context (See
the next page for a copy of the poster presented at the Empirical Fair at
REFSQ’2012).

The domain of the software system is not relevant, while a real commitment to
work on the initial requirements is a must. For the first application, two requirements
engineers or one engineer and a representative of the marketing department of the
company would be the best choice. Using only a single subject or more than two
could be discussed with the researchers.

A couple of two-hour sessions are needed for this first test. The expected outcome
for the company would be a number of innovative requirements.

316

Empirical Research Fair

Applying Creativity Techniques
to Requirements Elicitation:

Defining an Enhanced EPMcreate
Luisa Mich, University of Trento, Italy

Daniel M. Berry and Victoria Sakhnini, University of Waterloo, Canada

You are trying to develop your next innovative software system.
Finding innovative requirement ideas for your software system requires creativity.

How do you encourage your analysts to be more creative,
to think more out of the box for the innovative software system?

Brainstorming for requirement ideas is a popular and effective method for encouraging analysts to be
more creative in generating requirement ideas for your software system.

Perhaps you have felt that there are better ways to encouraging creativity in generating innovative
requirement ideas. You are right!

We have demonstrated in a number of experiments that EPMcreate is more effective than
brainstorming to generate requirement ideas.

EPMcreate works better than
brainstorming because

EPMcreate gets the analysts to
systematically explore the
space of requirement ideas
while brainstorming leaves

analysts wandering aimlessly in
the same space.

EPMcreate leads its users to
focus on all combinations of the
viewpoints of software system's

stakeholders.

We have also demonstrated that
two optimizations of EPMcreate,
one involving fewer steps and
one involving smaller groups,
are even more effective in
helping a group of analysts to
generate innovative requirement
ideas.

These optimizations are cheaper
to deploy than is EPMcreate,
because they require less time
or fewer people.

We are considering other optimizations and seek industrial organizations in which to empirically test
their effectiveness in enhancing requirements elicitation.

The benefits to you for allowing us to do the tests in your organization are that:

- Your people will learn EPMcreate and the two optimizations that are immediately usable.
- Your people may end up learning an even better optimization.

�

�

Creativity is allowing yourself to make mistakes.
Art is knowing which ones to keep.

Dilbert

If you are interested in participating, please contact:
Luisa Mich at <luisa.mich@economia.unitn.it> in Europe,

Daniel Berry at <dberry@uwaterloo.ca> in North America, or either anywhere

317

REFSQ 2012 Empirical Track Proceedings

Supporting Client-Developer Feedback Loops in Agile
Requirements Engineering by means of a Mobile RE Tool

Maya Daneva1, Nelly Condori-Fernandez2, Norbert Seyff3

1,2University of Twente, The Netherlands 3University of Zuerich, Switzerland
1m.daneva@utwente.nl, 2n.condorifernandez@utwente.nl, 3seyff@ifi.uzh.ch

Abstract. This poster paper presents an exploratory study on the use of the
iRequire tool in support of client-developer feedback loops in agile projects.
The iRequire tool is a smart phone application that has already been evaluated
in three pilot studies. In this study, we will use iRequire to analyze the types of
requirements blogging behavior in an agile RE process for the specific purpose
of understanding helpful and unhelpful practices in agile requirements
elicitation. Helpful are those that enhance business value generation, while
unhelpful are the ones that hamper it.

Keywords: Requirements engineering, stakeholders collaboration, users’
feedback, requirements elicitation, micro-blogging

1 Introduction: What is our research about and why it is
important?

Clients’ involvement by means of quick feedback loops is recognized to be both the
strongest and the weakest point in agile RE processes. The strength lies in the
increased business value generation through the mechanisms for frequent question-
answering sessions that agile processes presuppose. However, prior research pointed
out that value generation is impeded due to difficulties in getting clients consistently
involved when developers need them. Specifically small and medium size client
companies often face time pressure and work burdens because while serving on-site
on a project, they leave their regular office work undone. As a result, many agile
developer teams find it problematic to enlist their client’s collaboration, which, in
turn, impacts the flow of business value throughout the agile project. To overcome
this issue, companies put either an ”on-site developer” in the client organization, or
establish some phone-based communication practices to remain in touch with their
clients on everyday basis. However, these approaches are only partial solutions from
the client’s perspective. In this study, we therefore focus on an alternative approach
which leverages the fact that many clients use smart phones in their day-to-day
business communication and the use of their phones can be extended to serve agile
RE purposes. Specifically, we focus on the tasks of collecting user feedback on
software product functionality that is delivered in each iteration of an agile project.
We suggest a mobile RE tools be used to enable clients to blog their requirements in a

318

Empirical Research Fair

location-and-time-independent manner. The requirements can (i) be in a variety of
formats, e.g. voice, text, photographs or videos, and (ii) pertain to new applications or
to already existing systems that are subjected to follow-up improvements. The goal of
this study is to get a deeper understanding of what helpful and unhelpful behaviors on
client’s and on developer’s sides the use of such a tool will promote in agile project.
To the best of our knowledge, mobile RE tools have not yet been deployed for
supporting agile RE. We propose to carry out an exploratory case study in which we
use a real-life project with intensive client-developer interactions, and apply one
specific mobile tool, iRequire, that has already been evaluated in three small-scale
pilots. We will analyze the types of requirements blogging behavior in an agile RE
process in the organization for the purpose of understanding helpful and unhelpful
practices in agile requirements elicitation. Helpful are those that enhance business
value generation, while unhelpful are the ones that hamper it.

2 Wanted from industry

We seek collaboration with any agile organization willing to adopt the iRequire tool
for at least three iterations of their agile project. We would need at least (i) two clients
or marketing managers who represent the client organization, and (ii) one member
from the agile development team, be it a project manager or a developer. The
iRequire tool would be deployed in support of requirements elicitation and collection
tasks that occur between iterations. We estimate a max of 8 person/hours distributed
over 6 weeks of time. This time will be spent on letting the clients use iRequire, and
interviewing them, to understand the kinds of requirements that were elicited and the
helpful and unhelpful behaviors from the client’s and developer’s site in the process.
We consider our research to be of value to the company, because it may shed light
into those client-developers interactions that are critical for business value generation,
so that company might search for ways to enhance their role in the agile process.

2 Work Plan

Our work plan includes the following: First we will train the practitioners (i.e. clients
and developers) on the iRequire tool (which is a mobile application on a smart
phone). Second, once practitioners use it, we will review the requirements collected
and classify them according to types of problems they address. We will also interview
the clients and the developers about what they found as helpful and unhelpful
behaviors that they used in the process of blogging requirements. The interview data
will be analyzed by means of the Grounded Theory approach.

319

REFSQ 2012 Empirical Track Proceedings

Using E-mails and Phone Calls to Resolve
Requirements Engineering Issues: Which Works Best

and for Which Type of Issue?

Maya Daneva
University of Twente, Drienerlolaan 5,

7522 AE Enschede, The Netherlands
m.daneva@utwente.nl

Abstract. This poster treats the requirements engineering process as a series of
conversations and acknowledges that many of these conversations happen via
email and over the phone. However, some of these conversations are critical,
for example those about requirements issue resolution. The goal of this proposal
is to understand what renders email unproductive and for what kind of issues
would phone calls be a better alternative. Also, how to recognize the time when
it is better to stop emailing and consider face-to-face meetings or phone calls.

Keywords: Requirements engineering, communication, collaboration,
requirements negotiation, stakeholders interaction.

1 Introduction

Requirements Engineering (RE) relies on conversations [1] to occur. While RE text
books implicitly assume that these conversations are face-to-face, in most projects, a
major portion of the requirements conversations and issue resolution take place over
email and over the phone (even when the involved parties work on the same floor in
an office). However, recent studies in psychology and in organizational behavior that
investigated projects stakeholders’ email use for the purpose of issue resolution,
indicate that email is a convenient mechanism for issue avoidance. The 2009 study
from the University of Massachusetts Amherst found that this is especially true in
cases in which stakeholders face decision fatigue [2] (too many decisions are
addressed to them to be processed in too few hours) or work pressure, and also that
email is conductive to stakeholder’s use of deception.

In requirements conversations, it is often easier, faster, less stressful, and less
confrontations to have critical or challenging email versus a live one-on-one with a
counterpart. As a result, many RE staff members experience unproductive strings of
back-and-fort emails of texts that could have been stopped in round two, but
continued. Example of known problems are the tendency to prolonged debate, the
promotion of reactive responses and the easiness of misreading tone and context. This
email-based mechanism in conversations seems therefore detrimental to critical RE
processes that are likely to be focused on quick issue resolution, most notably,

320

Empirical Research Fair

requirements negotiation (e.g. requirements prioritization, requirements change
evaluation). In this study, we set the goal to understand the critical points in time at
which RE stakeholders abandon unproductive strings of emails and pick up the phone,
or better – call for a personal meeting. The overall expected outcome will be to distill
some heuristics for helping choose the email over the phone or vice versa when in
need to resolve requirements issues.

2 Wanted from industry

We welcome the collaboration with an organization willing to provide access to at
least 10 practitioners involved in different roles in the RE process. The practitioners
should (1) have at least three experiences in unproductive emails, and (2) have shown
courage and picked up the phone for the sake of resolving things more efficiently. We
will administer an open-ended questionnaire to understand (i) some important
attributes of the requirements issues the practitioners had to resolve, (ii) the
inconveniences the email-strings had created, and (iii) the reasoning that the
practitioners used to make the judgment that a phone call or a meeting would be more
productive. We plan to have a 30 min interview with each practitioner. This amounts
to 5 person/hours that would take place over a period of a month. We consider our
research to be of value to the company, because it might generate ideas on how to
improve the balance between email and phone use in conversation aiming at
requirements issue resolution.

2 Work Plan

Our work plan includes the following: First, each practitioner will be introduced into
the goals of the study and will be asked to answer no more than 10 questions. The
interviews will be transcribed and analyzed. We will use qualitative analysis
techniques (e.g. grounded theory) for interview data processing. The resulting
heuristics will be evaluated for external validity in follow-up studies.

References

1. Goleman, D. Social Intelligence: the New Science of Human Relationships, Betam (2006)
2. Baumeister, R. F., Tierney, J. Willpower: Rediscovering the Greatest Human Strength,

Pinguin Press (2011)

321

REFSQ 2012 Empirical Track Proceedings

Patterns of Requirements related Communication

Eric Knauss, Daniela Damian

University of Victoria, Canada
{erickn, danielad}@cs.uvic.ca

Introduction. Effective collaboration during Requirements Engineering is essential
for project success and yet very difficult. This collaboration includes the discussion
and negotiation of requirements with different stakeholders, as well as deriving, as-
signing, and scheduling tasks and subtasks from these requirements. Although exist-
ing requirements management tools offer some support to this collaboration, practi-
tioners rely on a combination of collaboration tools such as email and issue-trackers.
Often, this leads to missing a complete view on the state of the requirements-related
discussion as well as a lost opportunity in leveraging the wealth of requirements-
related communication data available in projects.

Collaboration with the Industry Partner. In our research we aim on investigating
patterns of requirements related discussions that can help projects continually monitor
the health of requirements-driven collaboration. Based on a framework for analyzing
requirements-driven collaboration [1], we offer to analyze requirements-driven com-
munication by developing stakeholder requirements centric social networks (RCSN).
Industry partners could benefit by pursuing a number of analyses for:

• Broker identification: Identifying the brokers of requirements related information
to make project managers aware of critical people in a project.

• Expertise seeking: Analyzing the communication and assignments to tasks re-
lated to requirements to help find experts for a given topic.

• Diagnosing coordination: Analyzing the alignment and correlation between dif-
ferent social networks provides valuable information to managers about:
• Socio-technical congruence, as an example of a measure that can identify

gaps in coordination. It allows managers to better align the social structure of
an organization with the technical dependencies among requirements.

• The health of requirements and their development – analyzing requirements
related-discussion allows identifying problematic requirements where the
coordination is burdened by ongoing efforts to clarify the requirement.

Our research aims at identifying patterns of requirements based communication in
software projects and will extend the analysis framework with automatic classifica-
tion of discussion items (analogous to identifying security issues in [2]).

1. Damian, D., Kwan, I., Marczak, S.: Requirements-driven collaboration: Leveraging the invisible rela-

tionships between requirements and people. In: Mistrík, I., Grundy, J., Hoek, A., and Whitehead, J.
(eds.) Collaborative Software Engineering. 57-76. Springer, Berlin Heidelberg (2010).

2. Knauss, E., Houmb, S., Schneider, K., Islam, S., Jürjens, J.: Supporting Requirements Engineers in
Recognising Security Issues. In: Proceedings of REFSQ’11. Springer, Essen, Germany (2011).

322

Empirical Research Fair

Requirements Elicitation Driven by End-Users

Alessia Knauss, Daniela Damian

University of Victoria, Canada
{alessiak, danielad}@cs.uvic.ca

Introduction. Requirements engineering, especially for existing software systems,
relies on effective capturing of stakeholder needs. End-users of the system are a valu-
able source of creativity not sufficiently taken into account in conventional require-
ments engineering methods. We study requirements elicitation driven by end-users:
End-users are not considered to be passive sources of requirements, but as active par-
ticipants of requirements elicitation. By allowing end-users to articulate their needs
and to propose suggestions for improvement the chances of enhancing user accep-
tance of the system are increased. Existing approaches based on social media show
promising support for end-user driven requirements elicitation.

Research Goal. Our goal is to investigate which factors have an impact on the quality
of end-user driven requirements elicitation. For this, we want to analyze require-
ments-driven collaboration [1], i.e. how end-users discuss requirements in a group.
Among other factors, we want to investigate in this context how the following factors
impact the effectiveness of end-user driven requirements elicitation:

• Multimedia content – we assume that context rich multimedia representation of
requirements improves the end-users’ ability to identify tacit needs and is an effi-
cient alternative to textual requirements documentation [2].

• Seeding – we assume that end-users will find it easier to add new requirements, if
there already exist requirements that were seeded into the social media.

Collaboration with the Industry Partner. We are looking for an industry partner
who is ideally constantly improving an existing, large, feature-rich software system,
used by many different user types. Together, we want to explore how these new me-
dia allow integrating end-users in the requirements engineering process in a case
study. With the help of the evaluation results we hope to improve the industry part-
ner’s requirements engineering process. Based on the increased involvement of end-
users we are confident that this will increase chances to build software that satisfies
users.

1. Damian, D., Kwan, I., Marczak, S.: Requirements-driven collaboration: Leveraging the invisible

relationships between requirements and people. In: Mistrík, I., Grundy, J., Hoek, A., and White-
head, J. (eds.) Collaborative Software Engineering. pp. 57-76. Springer-Verlag, Berlin Heidel-
berg (2010).

2. Brill, O., Schneider, K., Knauss, E.: Videos vs. Use Cases: Can Videos Capture More Require-
ments Under Time Pressure? In: Wieringa, R. and Persson, A. (eds.) Proceedings of the 16th In-
ternational Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ ’10). pp. 30-44. Springer, Essen, Germany (2010).

323

REFSQ 2012 Empirical Track Proceedings

�

324

Part III

REFSQ 2012 Doctoral Symposium Proceedings

325

�

326

11 Preface

Editor

Barbara Paech
University of Heidelberg, Germany, paech@informatik.uni-heidelberg.de

REFSQ 2012 Doctoral Symposium Proceedings

327

�

328

Report on the
Second REFSQ Doctoral Symposium

Barbara Paech

University of Heidelberg, Germany

 paech@informatik.uni-heidelberg.de

In 2012 REFSQ has hosted the second Doctoral Symposium for Ph.D. students
working in the general area of Requirements Engineering. The symposium was
organized by the author, and intended to bring together Ph.D. students with the double
purpose of encouraging networking and the establishment of links at an early stage in
their careers, and of providing valuable advice from a panel of senior researchers on
how to best bring the Ph.D. work to fruitful (and timely!) completion.

In response to the Call for Papers, ten submissions were received from as many
Ph.D. students, each consisting of two elements:

1. a research abstract describing the problem addressed, its relevance for research
and practice, an outline of the intended solution, some consideration on the
novelty of the proposed solution, and an outline of the research method
applied and of the current stage of the work;

2. a recommendation letter by one of the supervisors, establishing relevance for
Requirements Engineering research and presenting a general overview on the
student's progress.

All proposals were independently reviewed by two members of the Symposium's
Program Committee, who provided recommendation for acceptance or rejection. As a
result of this process, seven submissions were accepted for presentation.

In line with the REFSQ tradition, and with the overall goal, the Symposium was
planned for special emphasis on discussions and interaction, rather than on
presentations. To further encourage discussion not only with panelists and other
participants to the Symposium itself, but also with the general audience of REFSQ,
authors were invited to prepare posters to be displayed in the common area during the
main REFSQ conference (so that participants to both the scientific and the industrial
track of the main conference could examine them).

 On the 19th of March, 2012, the Doctoral Symposium took place. Attendants
included the seven presenters, a group of senior researchers serving as advisors, and
some students who had not submitted a proposal, but who were attending the
Symposium in preparation for future developments of their work. Each presenter was
allocated 50 minutes, with 20 minutes for presentation and 30 for discussion. As is
typical of the REFSQ spirit, the discussions were very lively, both by the panelists
and by fellow students. Minutes of the various discussions were recorded during the
symposium by the participants, and provided to the presenters; this ensured that the
students could benefit from a complete and clean trace of the whole discussion.

329

REFSQ 2012 Doctoral Symposium Proceedings

In addition to the presentations, the Symposium hosted a micro-tutorial offered by
Dan Berry about how to complete a Ph.D. on time — reinforcing the main message of
focusing on a well-defined problem before venturing into extending a proposed
solution to loosely related issues. After the micro-tutorial, a brief session was devoted
to collecting feedback and impressions from the students and panelists, with the
purpose of improving the process for next year's edition.

After the Symposium, the seven presenters were invited to submit a revised version
of their research abstracts, taking into account the advice and suggestions received, as
well as any further progress in their work that might have happened since the original
submission. The reader will find these extended abstracts (besides one) in the
following pages.

We would like to thank the members of the REFSQ Doctoral Symposium Program
Committee, who helped in the selection process and provided initial feedback to the
students, and the panelists who participated in the lively discussions.

Last, but not least, we gratefully acknowledge the excellent logistic support we
received from the local organizers, and notably the assistance of Vanessa Stricker.

Doctoral Symposium Organization

Program Committee
 Dan Berry, University of Waterloo, Canada

Sjaak Brinkkemper, University of Utrecht, Netherland
Vincenzo Gervasi, University of Pisa, Italy (co-chair)
Tony Gorschek, Blekinge Institute of Technology, Sweden
Marjo Kauppinen, Helsinki University of Technology, Finland
Camille Salinesi, University Paris 1 Panthéon – Sorbonne, France

Panelists

Dan Berry, University of Waterloo, Canada
Sjaak Brinkkemper, University of Utrecht, Netherland
Samuel Fricker, Blekinge Institute Technology, Sweden
Marjo Kauppinen, Helsinki University of Technology, Finland
Barbara Paech, University of Heidelberg, Germany
Camille Salinesi, University Paris 1 Panthéon – Sorbonne, France
Kurt Schneider, University of Hannover, Germany

Local organization & proceedings

Vanessa Stricker, paluno, Germany
Wilhelm Springer, University of Heidelberg, Germany

Presenters

Noorihan Abdul Rahman, Universiti Teknologi Malaysia, Malaysia

330

Doctoral Symposium Preface

Elizabeth Bjarnason, Lund University, Sweden
Alexander Delater, University of Heidelberg, Germany
Pariya Kashfi, Chalmers University of Technology, Sweden
Marko Komssi, Aalto University School of Science and Technology, Finland
Cyril Mauger, Public Research Centre Henri Tudor, France
Cristina Ribeiro, University of Waterloo, Canada

331

REFSQ 2012 Doctoral Symposium Proceedings

�

332

12�Doctoral�Symposium�

Doctoral�Symposium�Programme�

� Requirements�Elicitation�Technique�for�Social�Presence�in�Collaborative�Activities�in�
Support�of�E�learning�Domain�
Noorihan�Abdul�Rahman,�and�Shamsul�Sahibuddin�

334

� Integrating�Requirements�Engineering�with�Software�Development���A�Research�Abstract�
Elizabeth�Bjarnason�

342

� Traceability�between�System�Model,�Project�Model�and�Source�Code�
Alexander�Delater,�and�Barbara�Paech�

350

� Engineering�User�Experience�Requirements�An�Incremental�Approach�
Pariya�Kashfi�

357

� Method�for�the�Conceptual�Phase�of�an�Integrated�Product�and�Service�Design�Applied�to�
Construction�Project�
Cyril�Mauger�

365

� The�Severity�of�Undetected�Ambiguity�in�Software�Engineering�Requirements�
Cristina�Ribeiro�

373

�

REFSQ 2012 Doctoral Symposium Proceedings

333

Requirements Elicitation Technique for Social Presence
in Collaborative Activities in Support of E-learning

Domain

Noorihan Abdul Rahman1,1, Shamsul Sahibuddin2,

1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Malaysia,
Shah Alam, 40450 Shah Alam, Malaysia

2Advanced Informatics School, Universiti Teknologi Malaysia International Campus,
Jalan Semarak, 54100 Kuala Lumpur, Malaysia

noorihan@kelantan.uitm.edu.my, shamsul@utm.my

Abstract. Requirement Engineering (RE) is an initial stage in software
production and essential for achieving software quality. Proper identification of
requirements technique is crucial to ensure software requirements are translated
accurately by the stakeholders. Requirements elicitation enables requirements
engineers and developers to successfully capture the right criteria according to
users’ interests as well as minimizing requirement error for development
process. This paper addresses a new requirements elicitation technique to
support requirement from human dimension in collaborative activities. Social
presence is taken as the research element in collaborative activities. This is to
visualize how the proposed technique may assist in capturing problem-specific
domain such as social presence. E-learning is chosen as the case study to
foresee how requirements engineering may enhance its knowledge by
identifying processes to extract social presence as requirements features from
user’s perception. This paper also outlines progress and future work that will be
carried out by the researcher.

Keywords: Requirements elicitation technique, requirements engineering,
social presence, social interaction, collaborative activities, documents.

1 Problem Statement

In producing software, Requirements Engineering (RE) plays its part in eliciting
requirements, refining requirements, prioritizing requirements and establishing
requirements. RE consists of a few processes like requirements elicitation or
requirements discovery, requirements analysis and reconciliation, requirements
representation or requirements modeling, requirements verification and validation and
requirements management [1]. RE is considered as an important process in software

1 Noorihan Abdul Rahman, 2Shamsul Sahibuddin. Research University Grant vote 02H40,
UTM and collaboration with UiTM and MOHE, Malaysia

334

Doctoral Symposium

development since identification of right requirements can aid requirements engineers
and developers to achieve desired software specification by minimizing requirements
errors. Therefore, prevention of requirement error must be detected earlier to prevent
from potential and critical risks in the future [2]. A proper requirements elicitation
technique may contribute to accurate requirements before implementation starts.
There are existing requirements elicitation techniques available to maintain
requirements’ consistency, accuracy as well as ambiguity [3-5], however existing
methods are focusing on general problem domain and there is an opportunity to
improve elicitation technique to support human activities in order to address problem-
specific domain [6]. From this background study, we believe that a new requirements
elicitation technique is possible to be introduced to address problem-specific domain
in order to support human activities and a sub research question for this issue is, ‘Is it
possible to introduce a new requirements elicitation technique to address the domain
that is related to human activities?’

In collaborative software such as E-learning, for example, requirements engineer
and related stakeholders need to understand what are the requirements required by
users [7-9]. Getting requirement from human activities is considered as a challenge
since it is generated from human’s expression and feedback. Requirements elicitation
technique can assist stakeholders to express their ideas on how to obtain software
features. In E-learning, for instance, developer needs to understand the idea of
cognitive science in order to permit the understanding of social interaction value in E-
learning communities. Collaborative activities in E-learning allow learners to
communicate for knowledge sharing during learning process regardless of ways of
interaction in E-learning platform [10]. Learners can perform activities like
discussion, online quiz and assignment, announcement in online forum, chatting with
friends and other related tasks which can help them to share their knowledge and
ideas [11-14].

However, there is a challenge in sustaining learning interest in E-learning. Some
students lack of motivation to interact and feel insecure to express their opinions in E-
learning [8, 15, 16]. There is also an issue in preserving the usability of E-learning
among students and hence reduce the flexibility to learn anytime anywhere. Having
said that, we believe that there is an opportunity in enhancing requirements elicitation
technique for collaborative application especially for E-learning domain. This is also
to address the issue of technique in elicitation for only general domain. Improvement
of proposed elicitation technique in this research is hoped to result a technique that
cater problem-specific domain issue such as E-learning domain. Another sub research
question is ‘Is the new requirements elicitation technique able to improve social
presence in collaborative activities in E-learning domain?’

2 Relevance or Motivation

Requirements elicitation is a very important phase in RE. Having malfunction of
requirements elicitation may invite project failure in software development [17].
There are several reasons why this topic has been initiated as a research topic. First
and foremost, the issue of problem-specific domain [6] such as social presence in E-

335

REFSQ 2012 Doctoral Symposium Proceedings

learning application has triggered the issue of weakness in existing requirements
elicitation techniques. It gives the opportunity to explore the knowledge of
requirements elicitation technique as well as identifying steps needed in order to
capture social presence as requirements in E-learning. Social presence in an E-
learning can be expressed by a feeling of being there or being with others as if in face
to face classroom. It can be defined as the sense of “being there” [18] or
psychologically present [19] with others.

The development of social presence involved with demonstrative, dynamic and
cumulative [20]. Demonstrative involves the action from the person such as posting
messages or any online activities that may leave his remark online. Whereas,
frequency of the interaction, number of time spent for interaction as well as interests
on the interaction may lead to how dynamic is the social presence in the online
application. Social presence also can increase overtime whereby one person may get
familiar with another person through their history of discussion or previous
communication in online application. The person who is not familiar with another
person will have less interaction among them since their social presence has not been
developed previously in the online environment.

As for the second motivation, this research has enlightened the importance of
eliciting human activity in E-learning since E-learning portrays social interaction
through online activities [21]. By investigating element of social presence in online
activities, requirements elicitation techniques should provide the way for stakeholders
to mutually understand requirements for social presence and hence maintain
connectedness among users in E-learning.

Thirdly, a proper requirements elicitation technique may mitigate stakeholders in
obtaining more accurate requirements [4, 6, 22-24] of social presence in E-learning.
Therefore, there is a reason why there is a need to prepare a complete set of
requirements specification in requirements document in order to understand users’
request which is related to human activities in E-learning.

Fourthly, there is a prospect to increase the quality of elicitation technique for
social presence value in E-learning since existing elicitation techniques are more
appropriate for capturing requirements with these criteria; consistency, correctness
and ambiguity. It is a challenge for requirements engineer to carry out a technique that
can help them to elicit human-related requirement such as social presence.
Requirements engineer may find some difficulties in getting requirement related to
human experience and feeling. Users may find it easier to articulate their requirements
about technical requirement rather than human activity with the software.

3 Proposed Solution

This research proposes requirements elicitation technique for supporting social
presence in collaborative application. E-learning has been selected as the domain to
identify and discuss collaborative activities involved in encouraging social presence.
The proposed technique will involve some processes to ease requirements engineers
and related stakeholders to capture requirements in social presence. The proposed
technique will also permit users to address social interaction requirements voluntarily.

336

Doctoral Symposium

The solution is going to complement the research question of this study, which is
to answer, ‘Is the new requirements elicitation technique able to capture social
presence as a requirement in collaborative application?’ By focusing on how to
implement a new technique, we believe that sub research questions in Section 1 can
also be achieved in this study.

For the elicitation process, the researchers are planning to interpret the meaning of
social presence requirements into a format which is understandable by the
requirements engineers and related developers. The research members are doing
progress in determining the sufficiency of whether to apply ontology or to use a
simple translation tool which can help requirements engineers and developers to
produce a requirements document for social presence. Ontology will be used in
elicitation process in order to explicitly described terms and concepts of social
presence. From the preliminary result of the selected E-learning, social presence terms
and concepts will be interpreted using description of ontology. XML will be used to
help the translation of social presence element to a set of requirements in E-learning
domain and hence a category of social presence requirements will be introduced into
existing requirements document. The summary of proposed solution can be illustrated
in Fig.1.

Fig. 1. Proposed Solution for Requirements Elicitation Technique.

In order to validate the conceptual model, three E-learning applications will be
used as domains to test the new requirements elicitation technique for extracting
social presence in collaborative application. Those three different E-learning systems
will be taken from three different universities in Malaysia. The model will therefore
be generalized according to the three E-learning systems.

4 Novelty

The contributions of this research are as follows:
i. Contribute to suitable requirements elicitation technique in

requirements engineering field.
ii. Include social presence category in requirements document in order to

improve software requirements specification.
iii. Improve social requirement extraction technique in elicitation activity.
iv. Improve students’ anticipation in E-learning usage by imposing social

presence features in E-learning design.

337

REFSQ 2012 Doctoral Symposium Proceedings

5 Research Method

Currently, quantitative study has been carried out to produce a preliminary result. For
this research, 5 variables have been used for designing the conceptual framework and
its numerical data is organized and analyzed using statistical tools such as SPSS and
AMOS. Quantitative can be used to measure the relations [25] between 5 variables
that has been identified at recent stage using literature study.

For the preliminary result, the questionnaires were given to 130 respondents and
the sample is resulted from a stratified sampling from the Faculty of Computer and
Mathematical Sciences, Universiti Teknologi MARA Kelantan. AMOS is used to
analyze data that has been pulled from SPSS. AMOS is useful in order to carry out
Confirmatory Factor Analysis (CFA) for conceptual model which is visualized in Fig.
2. Numerical analysis is done quantitatively in order to identify whether 4
independent variables mentioned have relations with the dependent variable. The
questionnaires have been modified from Tao [26] and Gunawardena [27]. Tao has
conducted a study on a relationship between motivation and social presence in online
class while Gunawardena did a study on the relationship between satisfaction and
social presence in computer-mediated conferencing environment. Both study
concluded the existence of social presence value in online communication and face to
face class respectively.

Fig. 2. Conceptual Framework of Social Presence in E-learning.

The questionnaires has been designed based on ARCS Model of Motivational
Design introduced by Keller [28]. Keller has identified four steps to encourage and
sustain motivation in the learning process. The model which is known as ARCS
model comprised of Attention, Relevance, Confidence and Satisfaction. In conducting
a literature study on social presence and ARCS Model, the authors have identified the
elements of social presence in the model. Therefore, the questionnaire adopted from
Gunawardena and Tao is possible for this research as well as identifying attention,
relevance, confidence and satisfaction as possible factors in social presence.

The sample size has been determined based on Hair et al. [29] which stated that
five or fewer constructs, each with more than 3 items per construct and high item
communalities can be adequately estimated with sample size as small as 100 to 150.
The total of 130 respondents has answered the closed-ended questionnaire based on
the element of social presence and the questionnaires have been categorized according
to ARCS categories. The questionnaires have 5 sections. Section 1 is designed to
capture students’ feedback on attention in using i-Learn for their study. Section 2 is
design to measure students’ response on relevancy of i-Learn content in terms of
subjects, assignments, activities and tasks given for i-Learn activities. Section 3
follows with seeking students’ confidence level in using i-Learn. Section 4 is design

Attention

Relevance Confidence

Satisfaction

Social
Presence

338

Doctoral Symposium

to obtain satisfaction among students using i-Learn. Section 5 is to capture social
presence level among students in i-Learn environment.

Table 1. Latent Constructs and Measuring Items.

Variable Latent Construct Number of Measuring Items
Independent Attention 9
Independent Relevance 10
Independent Confidence 18
Independent Satisfaction 4
Dependent Social Presence 13

The variables involved in the study consist of independent variables and dependent
variables. Independent variable which is also known as exogenous variable comprised
of ‘Attention’, ‘Relevance’, ‘Confidence’ and ‘Satisfaction’. Dependent variable or
endogenous variable in this study is ‘Social Presence’. From these variables,
measurement models have been identified by identifying latent constructs and
respective measuring items. Table 1 lists down number of measuring items for each of
the latent constructs that are analyzed during measurement model. Further processes
for research design are still in discussion phase and ongoing in this research since the
relevancy of having those processes have not been finalized and justified by research
members.

6 Progress and Future Work

This research has carried out a preliminary study for identifying social presence
element in selected E-learning domain, which has been elaborated previously in
Section 5. There will be a follow up of identifying social presence element from
experts. From there, the researchers will translate social presence elements into
meaningful statement and this information is added into software requirements
specification. Three different E-learning from three different universities will be used
as the domain to see whether conceptual model is accepted for finding the relations of
potential factors of social presence in the study.

The study is still at the initial stage of identifying potential factors for social
presence. Researchers need to re-address the issue of designing requirements
elicitation technique since the technique is expected to generate social presence
requirements from E-learning users. In doing so, researchers are now refining a
suitable process to achieve the objective of obtaining the requirements for social
presence. It is important for the researchers to compare a new requirements elicitation
technique with existing requirement elicitation techniques available in the literature.
By having the comparison of the elicitation techniques, this study is looking forward
for social presence requirement as the result of the elicitation technique in supporting
E-learning application and thus, may differentiate the technique with the existing
ones. Thus, there will be a contribution of knowledge for the area of RE for elicitation
process specifically for E-learning domain.

339

REFSQ 2012 Doctoral Symposium Proceedings

References

1. Laplante, P.A.: Requirements Engineering for Software and Systems,ed. Auerbach
Publications (2009)

2. Zowghi, D.: Does global software development need a different requirements engineering
process. Citeseer (2002)

3. España, S., et al.: An empirical comparative evaluation of requirements engineering
methods. Journal of the Brazilian Computer Society. 16(1): p. 3-19 (2010)

4. Kitamura, M., et al.: A Supporting Tool for Requirements Elicitation Using a Domain
Ontology. Software and Data Technologies. p. 128-140 (2009)

5. Liu, C.L.: Ontology-based requirements conflicts analysis in activity diagrams.
Computational Science and Its Applications ICCSA 2009. p. 1-12 (2009)

6. Kaiya, H., Saeki M.: Using Domain Ontology as Domain Knowledge for Requirements
Elicitation. In: 14th IEEE International Requirements Engineering Conference(RE'06).
IEEE Computer Society (2006)

7. Yeo, R.: Problem-based learning: lessons for administrators, educators and learners.
International Journal of Educational Management. 19 (7): p. 541-551 (2005)

8. Taradi, S.a.K., et al.: Blending problem-based learning with Web technology positively
impacts student learning outcomes in acid-base physiology. 29: p. 35–39 (2005)

9. Kinshuk, T.L.: Application of Learning Styles Adaptivity in Mobile Learning
Environments. In: Third Pan-Commonwealth Forum on Open Learning. Dunedin, New
Zealand (2004)

10. Fadel, L.M., Dyson, M.C.: Enhancing interactivity in an online learning environment. In:
Lecture Notes in Computer Science. 4663: p. 332 (2007)

11. Graf, S. Kinshuk: Analysing the Behaviour of Students in Learning Management Systems
with Respect to Learning Styles. 93: p. 53–73 (2008)

12. Helic, D., Krottmaier, H., Scerbakov, N.: Enabling Project-Based Learning in WBT
Systems. International Journal on E-Learning (IJEL) 2005. 4(4): p. 445-461 (2005)

13. Kreijns, K., Kirschner, P.A., Jochems, W.: Identifying the pitfalls for social interaction in
computer-supported collaborative learning environments: a review of the research.
Computers in Human Behavior. 19(3): p. 335-353 (2003)

14. Liu, Y., Lin, F., Wang, X.: Education practice and analysing of students in a Web-based
learning environment: an exploratory study from China. Online Information Review. 27(2):
p. 110-119 (2003)

15. Aziz, A.A., et al.: A Malaysian Outcome-based Engineering Education Model.
International Journal of Engineering and Technology. 2(1): p. 14-21 (2005)

16. Yusof, K.M., et al.: Problem Based Learning in Engineering Education: A Viable
Alternative for Shaping Graduates for the 21st Century? In: Conference on Engineering
Education. Kuala Lumpur (2004)

17. Kausar, S., et al.: Guidelines for the selection of elicitation techniques. IEEE (2010)
18. Heeter, C.: Being there: The subjective experience of presence. Presence: Teleoperators and

virtual environments.1(2): p. 262-271 (1992)
19. Gefen, D., Karahanna, E., Straub, D.W.: Trust and TAM in online shopping: An integrated

model. Mis Quarterly. p. 51-90 (2003)
20. Kehrwald, B.: Being online: Social presence as subjectivity in online learning. London

Review of Education. 8(1): p. 39-50 (2010)
21. Uden, L.: Activity theory for designing mobile learning. Int. J. Mobile Learning and

Organisation (2007)
22. Dzung, D.V., Ohnishi, A.: Ontology-Based Reasoning in Requirements Elicitation. IEEE.

(2009)
23. Farfeleder, S., et al.: Ontology-driven guidance for requirements elicitation. The Semanic

Web: Research and Applications. p. 212-226 (2011)

340

Doctoral Symposium

24. Shibaoka, M., Kaiya, H., Saeki, M.: Goore: Goal-oriented and ontology driven
requirements elicitation method. Advances in Conceptual Modeling Foundations and
Applications. p. 225-234 (2007)

25. Teruel, M.A., et al.: A Comparative of Goal-Oriented Approaches to Modelling
Requirements for Collaborative Systems (2011)

26. Tao, Y., The relationship between motivation and online social presence in an online class.
University of Central Florida Orlando, Florida (2009)

27. Gunawardena, C.N., Zittle, F.J.: Social presence as a predictor of satisfaction within a
computer-mediated conferencing environment. American Journal of Distance Education.
11(3): p. 8-26 (1997)

28. Keller, J.: Development and use of the ARCS model of instructional design. Journal of
Instructional Development. 10(3): p. 2-10 (1987)

29. Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Data Analysis,
7thEdition. Pearson Prentice Hall (2010)

341

REFSQ 2012 Doctoral Symposium Proceedings

Integrating Requirements Engineering with Software
Development - A Research Abstract

Elizabeth Bjarnason

Department of Computer Science, Lund University, Lund, Sweden
elizabeth.bjarnason@cs.lth.se

Abstract. Software development companies operating in market-driven
domains need to deliver new and appealing software products at an increasing
rate in order to stay competitive. This requires fast and efficient development of
software for which the requirements are based on ever-changing market
demands. Agile development claims to achieve increased development
efficiency by performing the requirements engineering (RE) activities
concurrently with design, planning and testing in an integrated fashion.
However, coordination and communication is often reported as a challenge both
for agile and for traditional RE practices. Increased insight into the factors
affected by integrating RE may allow tailoring the degree of RE integration to
suit specific project context, e.g. size, rate of requirements change, domain etc.,
and thereby support increased efficiency in software development. The aim of
this research is to develop methods for assessing the level of RE integration and
techniques for improving the integration of requirements. The research is
performed in collaboration with industry and the developed methods and
techniques will be empirically evaluated in an industrial setting.

Keywords: Integrated requirements engineering, software development, agile
development, process assessment, alignment, testing

1 Introduction

Companies operating in market-driven domains face the challenge of balancing high
requirements volatility [10] and uncertain cost estimates [10] with releasing software
within a critical market window [18], thus, making time to market an important
competitive factor. In addition, in large software development companies,
communication and knowledge share [4] between organizational units and roles [11]
is vital for enabling efficient development of competitive software. Requirements
engineering (RE) can aid the software development life cycle [5] both by enabling
decision making on which requirements to implement and by supporting clear
communication of these requirements to the relevant development roles. However,
this requires the RE activities [5] and roles [11] to be well coordinated with the rest of
software development, e.g. design, implementation and testing. Requirements that are
not aligned with design and with the amount of available resources are likely to cause
problems and lead to delays, wasted effort and issues with software quality [1, 5]. In

342

Doctoral Symposium

addition, failure to communicate requirements and changes to them to all relevant
parties, e.g. developers and testers, can lead to similar problems [3].

A closer integration of RE with the development process may enable the
requirements to be better aligned and coordinated with other software development
activities. This is the approach taken in agile software development to address the
challenges of an increased rate of requirements change and the need for rapid
software delivery [21]. In agile development, requirements are defined iteratively and
in close cooperation within cross-functional teams [15] thereby supporting improved
development efficiency and effectiveness, e.g. by avoiding the waste caused by
developing and testing software based on unrealistic or unclear requirements.
However, there are also challenges and risks with agile software development [2, 15]
thus indicating that there are more factors at work. This research aims at increasing
the insight into these factors and at enabling projects and organizations to select and
configure a suitable level of RE integration for their development process that will
enhance development efficiency and effectiveness.

Our main research question is if, and in which contexts, integrated RE can enable
increased development efficiency and effectiveness by improving the coordination
and alignment of requirements with software development. Based on an initial
theoretical framework, we have identified two potential research tracks. Namely, (1) a
gap finder that can assess the level of RE integration of an organization or project,
and (2) a technique for integrating requirements documentation with code and test
cases stored in the development environment. The purpose of the gap finder is to
identify areas of weak RE integration and thereby enable improving the integration in
those areas. Integrating the requirements documentation with the development
environment will bring the requirements closer to both the automatic test cases and
the source code, and the roles working with these artefacts. This technique may
address several RE challenges concerning communication with development roles and
with providing requirements specifications that correctly reflect the agreed
requirements. In addition, the initial theoretical framework will be developed and
validated against empirical data.

The rest of this paper is organized as follows. Related work is described in Section
2. Section 3 outlines the planned research approach, while Section 4 describes the
research method and the current status. Finally, Section 5 summarizes this abstract.

2 Related work

Damian et al. found that RE can support increased effectiveness of software
development and augment the efficiency and productivity of other processes and lead
to improvements in, e.g. project planning, managing feature creep, testing, defects,
rework, and product quality [5]. RE efficiency has been considered in research and
some methods for improving the efficiency have been proposed for, e.g. requirements
communications, negotiation and prioritization [7]. However, the bulk of the related
research focuses mainly on efficiency of the actual RE activities, rather than on
increased efficiency of the software development as a consequence of effective RE.

343

REFSQ 2012 Doctoral Symposium Proceedings

For example, only two of six papers at the 1st international workshop on RE efficiency
[7] seem to focus on increasing the efficiency of the overall development process.

Concurrent engineering [12] is an approach to product development where
engineering processes are carried out concurrently with extensive feedback and
iteration [21] and where the developers are to consider all aspects of the development
cycle from requirements to cost and quality. The gains reported for concurrent
engineering include increased efficiency, productivity and quality, and reduced waste
and shortened lead times [12]. Agile software development applies a concurrent
approach by integrating the processes for requirements, design and implementation
and the claimed gains are similar to those for concurrent engineering, including
increased responsiveness to change [21]. Six industrial RE practices used in agile
development and seven challenges connected to these have been identified by Ramesh
et al. [15]. Although face-to-face communication over documentation is one of the
principles of agile development, weak communication within agile projects, e.g. with
the customer and at the project level, has been found to lead to challenges with cost
and project-level schedule estimations and customer participation [15]. In addition,
these gaps in communication, in combination with the minimal amount of
documentation produced in agile development projects, have been reported to cause
problems with scaling and evolving the software and with including new project
members [15].

Alignment of RE with testing has been investigated by e.g. Sabaliauskaute et al.
and Uusitalo et al.. Issues related to organization, process, people, tools, requirement
changes, traceability and measurements have been reported to cause challenges in
aligning requirements and testing for large-scale software development [17].
Furthermore, a number of industrial practices for supporting alignment of
requirements and testing have been reported by Uusitalo et al.. These practices
include traceability between requirements and test cases [23], as well as, increased
communication between roles [23], e.g. by involving testers early in the project and in
requirement reviews, and by establishing communication between testers and
requirement owners. Similarly, Marczak et al. found that in requirements-driven
collaboration there is often close communication between requirements and testing
roles; key roles which when absent cause disruptions within the development team
[13]. Furthermore, Stapel et al. found that most problems in global software
development are related to communication, missing context, awareness and missing
document information [22]. To address these issues, awareness of the communication
paths was suggested, as well as, having ‘ambassadors’ physically present at the
different sites to improve the information transfer [22].

Various techniques and methods for aligning and integrating the requirements
specification with other development artefacts have been proposed. A lot of research
has been done on supporting traceability [8] within requirements and between
requirements and test cases. Another alternative approach is model-based
development [9] where the requirements are described in a formal language from
which code and/or test cases are then generated. Post et. al propose a more high-level
approach where test cases are linked to formalized scenarios of the requirements [14].

344

Doctoral Symposium

Fig. 1. A framework for integrated RE. Axes illustrated by requirements and testing
alignment practices, placed in order of relative distance between roles, artefacts and in time.
RE integration coordinates displayed for an agile project (A) and a waterfall project (B).

In agile development, integration of the requirements and testing artefacts is
supported by behaviour-driven development (BDD). In this approach, the focus is on
achieving an executable specification of the system by defining requirements as test
cases. A domain-specific language (DSL) containing terms from the business domain
is used to define the test cases. The DSL provides the customers and developers with
a common language that reduces ambiguities and misunderstandings. Solis and Wang
reviewed the available BDD literature and a number of BDD toolkits and found that
the area is still under development [20]. In addition, the toolkits are limited to only
supporting the development phase and do not provide the possibility to add domain-
specific concepts to the DSL [20].

3 Research Approach

An initial literature study and an interview study into the alignment of RE and testing
have been performed to gain a deeper insight into integrated RE. Based on these
studies, a theoretical framework for integrated RE has been outlined. The framework
consists of three dimensions, namely

� people: the distance between organizational units, roles, and individuals,
� artefacts: the distance in navigation and consistency between related documents,
� time: the temporal distance between related activities.

345

REFSQ 2012 Doctoral Symposium Proceedings

The initial version of the framework is depicted in Figure 1. On the axes, the
relative distances caused by some practices are shown and the coordinates of an agile
project (A) and a more traditional project (B) are shown. The agile project is
positioned closer to origo, indicating that the RE integration level is higher for A than
for the traditional project B.

Preliminary results from our case studies [1, 2, 3] and from related work [4, 5, 8,
11, 12, 13, 14, 17, 21, 22, 23] indicate that RE alignment and coordination with other
development activities can be achieved by decreasing the distance to RE over one or
more of the identified dimensions, thereby increasing the degree of integration. We
suggest that the level of RE integration can be gauged by the distance between RE
and other disciplines, where a shorter distance indicates a higher degree of
integration. Large distances along one or more dimensions are assumed to cause weak
alignment and coordination. These distances may be decreased by applying alignment
practices. For example, for the dimension of people the distance between
requirements engineers and testers may be decreased by including testers in
requirements reviews; an identified requirements and testing alignment practice with
the potential to improve test efficiency and effectiveness [23]. Furthermore, by
assessing and adjusting the level of RE integration for a project or an organization, the
development process may be optimized for the characteristics of a specific project or
domain, e.g. project size, rate of requirements volatility etc.. For example, a large
project most likely has many roles and different people involved in the requirements
flow from customer to development, i.e. a large distance between people. While a
small project might allow the customer to speak directly to the development team, i.e.
have a short distance between people. For large projects, the integration may be
improved by decreasing the distances over one or more dimensions. For example, by
documenting requirements as test cases (decreasing the distance between artefacts) or
by introducing cross-functional development teams including customer proxies (an
agile RE practice which would decrease the distance between people). These practices
would also decrease the distance in time between requirements and test definition, i.e.
increase the integration also along the time axis.

4 Research Method

We intend to further detail and develop the theoretical framework (described in
Section 3) by analyzing empirical data and comparing it to the framework, thereby
extending or modifying the theory by constant comparison to the data [19]. This will
then provide a theoretical basis for future research towards our two main research
goals, i.e. (1) an assessment method for RE integration and (2) a technique for storing
requirements in an integrated fashion with the source code and test cases.

Gap finder: a method for assessing RE integration. Industrial case studies [16]
have provided us with rich insight into factors involved in the interaction between RE
and software development for some RE challenges, primarily overscoping [1] and
communication [3]. We intend to use these empirical results in designing a method
for assessing the level of RE integration, by applying causal-based modelling. This

346

Doctoral Symposium

modelling technique can support reasoning about and assessing relationships in
software engineering processes and thereby be used to identify software
improvements [6]. We are currently complementing our previous case studies with an
investigation into the situation and causal relationships for an agile development
process. This case study also includes designing a set of integration metrics. The
identification of causal relationships through qualitative methods will be combined
with these quantitative metrics, and patterns between the two might be found. These
patterns may then be used in the design of a method for identifying RE integration
gaps, e.g. that the RE communication is weak between certain roles.

Integrating requirements in the development environment. As a first step
towards a technique for integrating RE with source code, support for documenting
and tracing requirements in an industrial development environment is planned to be
prototyped. The technique will bring the requirements closer to the source code and
the test cases (decreasing the artefact distance), and thereby also to the development
engineers (decreasing the people distance). This proximity of the requirements
documentation to development roles and to executable artefacts may close several
communication gaps. In addition, the requirements documentation will be stored
under the same CM control as the source code and automatic test cases. This CM
control of requirements will support managing requirements, source code and test
case versions in a uniform way. Furthermore, this technique can enable generation of
requirements specifications that include information about the test execution results.
For specific software builds, features and individual requirements that are not
correctly supported can be identified through the specification, thus, providing
increased visibility of software status from a requirements perspective. The use of
domain-specific languages (DSL) to specify requirements including the relationships
between them will be considered in a second step. Full-fledged usage of a DSL in the
elicitation phase by supporting extending the DSL with domain concepts can be
investigated either by extending an existing DSL or by designing a new one.

4.1 Evaluation of Research Results

This research is performed in collaboration with industrial partners using an empirical
approach. The methods under development are, thus, evaluated already at the design
stage with company representatives, i.e. through desktop evaluation [24]. In addition,
collaboration with industry ensures that the problems addressed are real-life problems
for which there are interested ‘customers’. Furthermore, the designed methods will be
tried out and empirically evaluated at one or more partner company.

4.2 Current status & plans

This research was initiated in Q1’10. The aim for 2012 is to design and empirical
evaluate an RE integration gap finder and a prototype implementation of integrating
requirements documentation with source code in a development environment. The
design, implementation and main data gathering would then be performed during
2012, with the goal to analyze, report results and complete a Ph.D. thesis in 2013.

347

REFSQ 2012 Doctoral Symposium Proceedings

5 Summary

Integrating RE with other software development activities is an approach applied in
agile software development to enable increased responsiveness to customer and
market changes. Agile development is reported to mitigate some RE risks [15] and is
often claimed to enable efficient development. However, agile RE practices have been
found to pose new challenges and risks [15]. Several of these risks are connected to
weak communication, despite face-to-face communication being an important
principle of agile development. Further research is needed to support improved
coordination and communication of RE, which is an important factor in enabling RE
to support efficient development [1, 3, 5, 11, 22].

This research aims at increasing the efficiency and effectiveness of software
development by providing support for customizing the level of RE integration with
other software development disciplines for the specific project context, e.g. project
size, frequency of requirements changes, domain etc.. A method for assessing the
level of RE integration and identifying gaps and weak RE integration is planned to be
developed. This method will be partly based on causal relationships identified through
industrial case studies into RE challenges both in a phase-based process [1, 3] and in
an agile development process. In addition, we plan to prototype and evaluate a
technique for integrating requirements in a software development environment, thus
documenting the requirements in the same system as the source code and the test
cases. Our research is performed in collaboration with industrial partners and the
methods that are developed will be empirically evaluated in an industrial setting.

Acknowledgements. The work is partially funded by the Swedish Foundation for
Strategic Research.

References

1. Bjarnason, E., Wnuk, K., Regnell, B.: Overscoping: Reasons and Consequences – A Case
Study in Decision Making in Software Product Management. Proc. of 4th Int. IEEE
Workshop on Software Product Management, IWSPM’10, 30-39. (2010)

2. Bjarnason, E., Wnuk, K., Regnell, B.: A Case Study on Benefits and Side-Effects of Agile
Practices in Large-Scale Requirements Engineering. Proc of 1st Int. Workshop on Agile RE,
Lancaster, UK. (2011)

3. Bjarnason, E., Wnuk, K., Regnell, B.: Requirements are Slipping Through the Gaps – A
Case Study on Cause & Effects of Communication Gaps in Large-Scale Software
Development. Proc. of 19th IEEE Int Requirements Engineering Conf. (2011)

4. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Commun. ACM, vol. Nov. 1988, 1268-1287. (1988)

5. Damian, D., Chisan, J.: An Empirical Study of the Complex Relationships between
Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Transactions on Software Engineering,
vol 43, no 7, pp 433-453. (2006)

348

Doctoral Symposium

6. Dumke, R., Richter, K., Georgieva, K., Asfoura, E.: Process Improvement Based on Causal
Networks, 8th ACIS Int. Conf Softw. Eng. Research, Manage.and Appl, pp.285-291. (2010)

7. Fricker, S., Seyff, N.: 1st Int. Requirements Engineering Efficiency Workshop – REEW
2011, ACM SIGSOFT Software Engineering Notes, Vol. 36, issue 3, pp. 26-28. (2011)

8. Gotel, O.C.Z., Finkelstein, C.W.: An Analysis of the Requirements Traceability Problem. 1st

Int Conf on Requirements Engineering, pp 94-101. (1994)
9. Hasling, B., Goetz, H., Beetz, K.: Model Based Testing of System Requirements using

UML Use Case Models. 1st Int Conf on Softw. Testing, Verif. and Valid., pp 367-376.
(2008)

10.Karlsson, L., Dahlstedt, A. G., Regnell, B., Natt och Dag, J., Persson, A.: Requirements
Engineering Challenges in Market-Driven Software Development-An Interview Study with
Practitioners. Information and Software Technology, Vol. 49, issue 6, pp 588-604. (2007)

11.Kraut, R.E., Streeter, L.: Coordination in Software Development. Communications of the
ACM, vol. 38, no. 3, 69--81. (1995)

12.Lawson, M., Karandikar, H. M.: A Survey of Concurrent Engineering. Concurrent
Engineering 1994 2:1 DOI: 10.1177/1063293X9400200101 (1994)

13.Marczak, S., Damian, D.: How Interaction between Roles Shapes the Communication
Structure in Requirements-Driven Collaboration. 19th IEEE Int Requirements Engineering
Conf. (2011)

14.Post, H., Sinz, C., Merz, F., Gorges, T., Kropf, T.: Linking Functional Requirements and
Software Verification. 17th Int. Conf on Requirements Engineering, 295-302. (2009)

15.Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inform. Systems Journal, vol 20, issue 5, 449-280. (2010)

16.Robson, C.: Real World Research. Blackwell Publishing. (2002)
17.Sabaliauskaite, G., Loconsole, A., Engstrom, E., Unterkalmsteiner, M., Regnell, B.,

Runeson, P., Gorschek, T., Feldt, R.: Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context. 16th Int Working Conf on Requirements
Eng. Foundation for Software Quality (REFSQ), pp. 128-142. (2010)

18.Sawyer, P.: Packaged software: Challenges for RE. Proc. of the 6th Int. Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ'2000). (2000)

19.Seaman, C.B.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering, vol. 25, issue 4, pp 557-572. (1999)

20.Solis, C., Wang, X.: A Study of the Characteristics of Behaviour Driven Development, 37th
EUROMICRO Conf. on Softw.Eng. and Advanced Applications (SEAA), pp.383-387.
(2011)

21.Sommerville, I.: Integrated Requirements Engineering: A Tutorial. IEEE Software, Vol. 22,
issue 1, 16-23. (2005)

22.Stapel, K., Knauss, E., Schneider, K.: Using FLOW to Improve Communication of
Requirements in Globally Distributed Software Projects. IEEE Proc. Int. Workshop on
Collab. and Intercult. Issues on Req.: Comm. Understanding and Softskills. pp. 5-14. (2009)

23.Uusitalo, E.J., Komssi, M., Kauppinen, M. et al.: Linking Requirements and Testing in
Practice. 16th IEEE Int Requirements Engineering Conf, NJ, USA, 265-270. (2008)

24.Wohlin, C., Gustavsson, A., Höst, M., Mattsson, C.: A Framework for Technology
Introduction in Software Organizations. Proc. Softw. Process Improve. Conf., 167-176,
Brighton, UK. (1996)

349

REFSQ 2012 Doctoral Symposium Proceedings

Traceability between System Model,
Project Model and Source Code

Alexander Delater, Barbara Paech

Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{delater,paech}@informatik.uni-heidelberg.de

Abstract. Traceability from source code to system model elements like
requirements has been extensively researched. Even though existing ap-
proaches use various heuristics and methods to compute traceability links
automatically, they do not return very satisfying and dependable results.
In contrast to these approaches, we not only consider the system model,
but also the project model, which is used for planning and organization
in software development projects. In this thesis, we plan to create and
utilize traceability links between elements from system model, project
model and source code. We believe that by using elements from the
project model as mediator connectors, links between elements from the
system model and source code can be easily created. In this paper, we
present the research problems that need to be solved as well as our prin-
cipal solution ideas to tackle these problems.

Keywords: traceability, system model, project model, source code

1 Introduction

The software development process relies on traceability information captured
throughout the evolution of a software product. Traceability supports, amongst
others, program comprehension, change management, software maintenance,
software reuse and prevention of misunderstandings [10]. Traceability between re-
quirements and source code has been extensively researched in the past years and
much progress has been made in this field. Because the manual creation of trace-
ability links between requirements and source code is cumbersome, error-prone,
time consuming and complex [22], a major focus in research is on (semi-) auto-
matic approaches. Existing (semi-) automatic approaches use various techniques,
e.g. information retrieval, execution traces, static/dynamic analysis, subscription-
based or rule-based link maintenance or combinations of them. Even though
these approaches use different heuristics and methods to compute traceability
links between requirements and source code, they do not return very satisfying
and dependable results [22].

In software development projects, two different types of models are used for
abstraction: the system model and project model [16]. Model elements from the

350

Doctoral Symposium

system model describe the system under construction, such as requirements, use
cases, components or design documents. Model elements from the project model
describe the on-going project, such as work items, the organizational structure,
iterations or meetings (we use the term work item instead of task to avoid mis-
understandings with the term task used in requirements engineering). These two
models have already been integrated within a model called MUSE: Management-
based Unified Software Engineering [16]. The MUSE model is implemented in
the model-based CASE tool UNICASE [4].

While the MUSE model describes the system to be developed and its project
management, it does not provide traceability to the source code. Furthermore,
the MUSE model supports the manual creation of traceability links, but it does
not support the automatic creation of traceability links.

In this thesis, we want to extend the MUSE model by a new code model to
support traceability to the source code. We want to study the usage of trace-
ability links between these three models, namely system model, project model
and code model. Moreover, we want to present a (semi-) automatic approach for
creating traceability links between these three models. These traceability links
are expected to support various development activities, such as program compre-
hension, change management and software maintenance. We want to implement
the extended MUSE model and the proposed approach for (semi-) automatic
traceability link creation in UNICASE and evaluate it in various case studies.

This paper is structured as follows: Section 2 describes the research problems
concerning this thesis. Section 3 presents the proposed solutions and discusses
their novelty. Section 4 gives an overview about related work. Section 5 discusses
the applied research methods. Our progress concludes the paper in Section 6.

2 Problems

There are various problems that need to be solved in order to link source code
with elements from system model and project model.

P1-Representations of Source Code: A problem is to define the repre-
sentations of source code that make up the elements of the code model.

P2-Capturing & Inferring Traceability Links: The manual creation
of traceability links is cumbersome, error-prone, time consuming and complex.
Thus, a (semi-) automatic approach for capturing traceability links between the
three models is necessary. Support for direct navigation between elements of all
three models is also required.

P3-Identifying Relevant Traceability Links: The approach for solving
P2 might create a lot of links. Support for the derivation of the most relevant
links is necessary.

P4-Supporting Change Impact Analysis: With the different elements
from the code model from P1 and approaches for capturing and identifying
relevant traceability links from P2 and P3, several development activities can be
supported. In this thesis, we want to focus on supporting change impact analysis
and present an algorithm using the newly created traceability links.

351

REFSQ 2012 Doctoral Symposium Proceedings

3 Proposed Solutions

3.1 P1-Representations of Source Code

For the elements of the code model, we want to focus on file-based and change-
based representations, because they are widely used in software development
projects. For example, file-based representations are file resources containing
source code or line(s) of code in these resources. Change-based representations
are supported by a version control system (VCS), e.g. patch or revision/branch.

UNICASE is a plugin for the Eclipse integrated development environment
(IDE). The Eclipse IDE supports various programming languages through ad-
ditional plugins, e.g. Java, C++, Python etc. By integrating UNICASE and
Eclipse with plugins for VCSs like Subversion [23] or Git [12], we can provide a
comprehensive tool environment supporting the developers while they perform
various development activities. By using these plugins, we can access file-based
as well as change-based representations of source code.

3.2 P2-Capturing & Inferring Traceability Links

Work items represent a unit of work which describe changes to be performed to
the code as well as new developments. They are the task descriptions used in
many software development projects. As they are the basis of the daily work,
they are regularly kept up-to-date [14]. Furthermore, as work items are used
to describe pending work, they can also implicitly mention the relationships
between system elements relevant to the current work item within its textual
description, e.g. the requirement that needs to be implemented or a related
design element.

System Model
e.g. requirement,

use case etc.

(A)
manual /
capture

(B)
manual /
capture

(C) Infer Traceability Links

Code Model
e.g. file resource,

revision etc.

Project Model
e.g. work item,
developer etc.

Fig. 1. Traceability between system model, project model and code model

We believe that by using project model elements as mediator connectors,
traceability links between system model elements and code model elements can
be easily created (see Fig. 1). The core idea of creating traceability links be-
tween elements of system-, project- and code model is letting the developers
create these links themselves. First, the developer selects a work item and starts
implementation. While working on the work item, all system elements (e.g. re-
quirements, design documents) the developer looks at during implementation are
automatically captured (see A in Fig. 1). After finishing the implementation of a

352

Doctoral Symposium

work item, the developer does not immediately commit the changes to the VCS.
Instead, before the commit, s/he has to verify the list of captured traceability
links. This means that the developer has to accept all or reject some traceability
links that were captured. It is an open question whether traceability links could
be suggested as likely to be relevant. This additional work results in very little
overhead for the developers. After this verification, the newly created revision in
the VCS is linked to the work item (see B in Fig. 1). It must be studied whether
the set of links of one work item can be used efficiently to navigate between the
elements linked to that work item, e.g. the requirements and the code related
through that work item (see C in Fig. 1). Note that this approach also implicitly
alleviates the problem of link maintenance, if it is assumed that any relevant
change to a system element is performed only in context of a work item. The
links of the most recent work items always provide the most up-to-date links
between elements of the system model and code model.

3.3 P3-Identifying Relevant Traceability Links

The approach for capturing and inferring traceability links might create a lot of
links. Support for the derivation of the most relevant links is necessary. We plan
to implement an algorithm that provides a relevance ranking for each link based
on the change history of the elements connected by the link. The change impact
analysis can focus on the most relevant traceability links.

3.4 P4-Supporting Change Impact Analysis

We plan to implement an algorithm for change impact analysis using the most
relevant captured and inferred traceability links. This algorithm bridges the gap
between requirements and source code to answer questions as: What parts of
the source code need to be changed based on a change in a requirement? We
want to classify our new algorithm using the taxonomy presented by Lehnert
[17] and compare it to existing algorithms. We expect that this algorithm is
able to provide more detailed results during change management than existing
algorithms.

4 Related Work

Maintaining traceability links between source code and other artifacts is a chal-
lenging task and therefore a field of intense research.

To the best of our knowledge, no approach uses work items to create trace-
ability links between requirements and code. Either they create links between
requirements and code using mostly (semi-) automatic approaches (e.g. informa-
tion retrieval [1, 19, 20, 13, 6], execution-trace analysis [8, 11, 5], static/dynamic
analysis [2], subscription-based or rule-based link maintenance [18] or combina-
tions of them [7]) or only create links between work items and code [3].

353

REFSQ 2012 Doctoral Symposium Proceedings

Furthermore, other approaches only relate structures in the source code like
classes, methods, lines of code or modules, files and resources to other artifacts
like requirements [24]. This is also supported by our approach. However, our
approach is also able to track exact changes in the source code.

An approach similar to ours for the automatic capturing of links was pre-
sented by Omoronyia et al. [21]. They have achieved traceability between use
cases and source code. Their approach is based on tracing the operations car-
ried out by a developer called navigation trails. However, this approach requires
an elaborate model with rankings of navigation trails to derive the most rel-
evant links. It is an open question whether the availability of work items can
alleviate this ranking and how to define rankings for other elements, e.g. design
documents touched while implementing a use case. Their approach is also able
to identify which developer is involved in the realization of a specific use case.
The contribution of Omoronyia et al. shows that tracking changes displays some
advantages over the other approaches. For example, relating a developer to the
source code and use cases is almost impossible with the other approaches, but
very easy if changes/operations are tracked, like in our approach.

Except Omoronyia et al., all other approaches mentioned above try to create
traceability links after the implementation of the source code. In comparison,
our approach creates traceability links while the system is implemented. We
track the changes made to the source code and link them to the work items they
belong to. The work items themselves are linked to elements of the system model
and new traceability links can be captured between them during development.
Based on the intermediate work items, we expect to be able to infer reliable
traceability links between system model elements and source code.

5 Research Methods

The overall goal is to validate our proposed solutions. To reach this goal, we
apply a tool prototype driven approach where each conceptual research result
is developed in parallel with a tool prototype based on the model-based CASE
tool UNICASE. Thus, we are able to validate our results early by applying them
in academic projects (e.g. bachelor/master theses), in practical courses as well
as in the open source project UNICASE itself.

First case studies showed that links between system elements and project
elements provide useful information for the work (by shortening the navigation
paths of the developers) and that based on such links system elements are kept
more up-to-date [15]. We want to conduct more case studies using our presented
approach and developed tool support based on UNICASE.

For change impact analysis, traceability links can be evaluated by calculating
two metrics: the percentage of actual matches that are found (recall) and the
percentage of correct matches as a ratio to the total number of candidate links
returned (precision). We want to apply these metrics to our algorithm for change
impact analysis and compare the results to existing approaches, e.g. [1, 19, 20,
13, 6]. We want to compare the effort and quality of capturing traceability links

354

Doctoral Symposium

between requirements and source code of our presented approach to the results
of other conducted exploratory experiments, e.g. by Egyed et al. [9].

6 Progress

In 2011, defined the representations of source code that we want to focus on (P1).
Furthermore, we provided (semi-) automatic support for capturing traceability
links between project model and code model. We used patches and revisions in
a version control system as two possible types of representation of source code.
Changes to the source code are tracked and when the developer commits some
code changes, links between the code changes and the work item are captured
(P2).

In 2012, we plan to provide (semi-) automatic support for capturing trace-
ability links between system model and project model in UNICASE (P2). We
will implement an algorithm that provides a relevance ranking for each link based
on the change history of the elements connected by the link (P3). Furthermore,
we plan to implement an algorithm for change impact analysis using the most
relevant captured and inferred traceability links (P4). We will evaluate the algo-
rithm using data from the open source project UNICASE. We expect to finish
this thesis by mid 2013.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation, IEEE Transactions on Software
Engineering, pp. 970-983 (2002)

2. Antoniol, G., Gueheneuc, Y.G.: Feature identification: A novel approach and a
case study, In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, pp. 357-366 (2005)

3. Anvik, J., Storey, M.A.: Task articulation in software maintenance: Integrating
source code annotations with an issue tracking system, In ICSM ’08: IEEE Inter-
national Conference on Software Maintenance, pp. 460-461 (2008)

4. Bruegge, B., Creighton, O., Helming, J., Koegel, M.: Unicase - an Ecosystem for
Unified Software, In ICGSE ’08: Distributed software development: methods and
tools for risk management, ICGSE Workshop 2008 (Bangalore, India, 2008)

5. Burgstaller, B., Egyed, A.: Understanding where requirements are implemented,
In 2010 IEEE International Conference on Software Maintenance, pp. 1-5 (2010)

6. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods, Trans-
actions on Software Engineering Methodology, vol. 16, no. 4, art. 13, ACM (2007)

7. Eaddy, M., Aho, A.V., Antoniol G., et al.: CERBERUS: Tracing requirements to
source code using information retrieval, dynamic analysis, and program analysis,
In the 16th IEEE International Conference on Program Comprehension (ICPC),
pp. 53-62 (2008)

8. Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis, Transac-
tions on Software Engineering, vol. 29, no. 2, pp. 116-132, IEEE (2003)

355

REFSQ 2012 Doctoral Symposium Proceedings

9. Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-
to-code traces: Two exploratory experiments, In RE ’10: Proceedings of the 18th
International IEEE Requirements Engineering Conference (RE) (2010)

10. Egyed, A., Grünbacher, P.: Supporting software understanding with automated re-
quirements traceability, International Journal of Software Engineering and Knowl-
edge Engineering, vol. 15, no. 5, pp. 783-810 (2005)

11. Eisenberg, A.D., De Volder, K.: Dynamic feature traces: Finding features in unfa-
miliar code (2005)

12. Git - Fast Version Control System. http://git-scm.com.
13. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via infor-

mation retrieval, International Conference on Requirements Engineering (2003)
14. Helming, J., Arndt, H., Hodaie, Z., Koegel, M., Narayan, N.: Semi-automatic as-

signment of work items, In ENASE ’10, pp.149-158 (2010)
15. Helming, J., David, J., Koegel, M., Naughton, H.: Integrating system modeling with

project management - a case study, In COMPSAC ’09: Proceedings of the 2009
33rd Annual IEEE International Computer Software and Applications Conference
(Washington, DC, USA, 2009), IEEE Computer Society, pp. 571-578 (2009)

16. Helming, J., Koegel, M., Naughton, H.: Towards traceability from project manage-
ment to system models, In TEFSE ’09: Proceedings of the 2009 ICSE Workshop
on Traceability in Emerging Forms of Software Engineering, pp.11-15. IEEE Com-
puter Society (2009)

17. Lehnert, S.: A taxonomy for software change impact analysis, In Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th
annual ERCIM Workshop on Software Evolution (New York, NY, USA, 2011),
IWPSE-EVOL ’11, ACM, pp. 41-50 (2011)

18. Maeder, P., Gotel, O.: Towards Automated Traceability Maintenance, Journal of
Systems and Software (2011)

19. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing, In Proceedings of the 25th International Con-
ference on Software Engineering, pp. 125-135. IEEE Computer Society (2003)

20. Marcus, A., Maletic, J.I., Sergeyev, A.: Recovery of traceability links between soft-
ware documentation and source code, International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

21. Omoronyia, I., Sindre, G., Roper M., Ferguson J., Wood, M.: Use case to source
code traceability: The developer navigation viewpoint, In 2009 17th IEEE Inter-
national Requirements Engineering Conference, pp. 237-242 (2009)

22. Spanoudakis, G., Zisman, A.: Software traceability: A roadmap, In Handbook of
Software Engineering and Knowledge Engineering, World Scientific Publishing,
pp. 395-428 (2004)

23. Apache Subversion. http://subversion.apache.org.
24. Treude, C., Storey, M.A.: How tagging helps bridge the gap between social and

technical aspects in software development, In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pp. 12-22 (2009)

356

Doctoral Symposium

Engineering User Experience Requirements
An Incremental Approach

Pariya Kashfi

PhD Candidate
Software Engineering Division

Department of Computer Science and Engineering
Chalmers University of Technology
pariya.kashfi@chalmers.se

Abstract. Both functional and quality requirements should be considered in soft-
ware development in order to result in a positive user experience. While require-
ment engineering has evolved and handles non-functional requirements, there is
still a lack of methods and guidelines for practitioners to address quality require-
ments, particularly those requirement that are not related to performing a task
or accomplishing a goal. One of the gaps in dealing with this type of require-
ments is that the suggested methods do not consider current software engineering
practices, and are difficult to put into practice by practitioners. In this project,
we propose an “incremental” approach to engineer user experience requirements.
The key concept in an incremental approach is to discover barriers in current
practices, and suggest efficient and cost-effective improvements.

1 Introduction

Many studies have pointed out the importance of taking both functional and non-func-
tional, i.e. quality, requirements into account in software (SW) development, particu-
larly in Requirements Engineering (RE). Nevertheless, there is still a lack of practical
guidelines and methods for Software Engineering (SE) practitioners in dealing with
quality requirements especially those quality requirements that are not related to per-
forming a task or accomplishing a goal, such as emotional connection, joy, and excite-
ment. We refer to this type of requirements as non-task-related requirements or user
needs. The history of studying non-task-related user needs goes back to the 90s [1]
when researchers initiated studies mostly under the name of User eXperience (UX) to
deal with different types of user needs, particularly in the field of Interaction Design
(ID) [2–4, 1]. Even so, within SE, there has been just a few studies that have taken UX
into account.

To give proper support to SE practitioners regarding UX, i.e. taking various types of
user needs into account in SW development, we consider the following steps necessary:
(i) understanding the concept of UX and its composing elements (ii) having guidelines
on how to improve current SE practices with minimal effort and cost in order to reach
a positive UX in developed SW. So far, UX related research in neither ID nor SE have
covered these steps. Studies in ID are mostly just theoretical contributions without any
actual use in industry. On the other hand, in SE, studies either are merely theoretical

357

REFSQ 2012 Doctoral Symposium Proceedings

contributions or provide too narrow views on UX and do not cover all of its aspects as
it is discussed in ID. This indicates a gap in UX theory as well as practice for SE.

To bridge this gap, in this project, we aim to investigate the current UX advance-
ments in SE and ID from SE practitioners’ perspective and based on that suggest an
approach to improve current practices in order to develop SW with positive UX. We be-
lieve that a realistic approach toward UX in SE, particularly in the RE phase, is an incre-
mental approach that does not require radical changes to the current practice, as opposed
to a revolutionary approach. The key concept in such an approach is to discover barriers
in the current SE practices, and suggest efficient and cost-effective improvements. Even
though the approach should deal with all phases of SW development, because of time
constraints, we initially focus on RE since engineering UX requirements is a key to
develop SW with positive UX in later phases. The research question we aim to answer
is: How can SE practitioners be supported to develop SW with right and required UX?
Our research consists of three main steps (i) defining UX for practitioners (ii) discov-
ering barriers to, and proposing improvements for developing SW with positive UX.
This step also includes recommendation of methods for identifying the barriers (iii)
proposing methods for evaluating the effects of applying the suggestions in the previ-
ous step on UX. We aim to reuse the existing theory rather than to develop it hence the
contribution of this project will be mainly methodological rather than theoretical.

2 Related Work

People choose products or services over one another because they provide “what” they
want to do, i.e. function, and also because those products or services are more preferable
in terms of “how” they provide that function, what “messages” they communicate to the
society, what “feelings” they trigger, etc. The needs, i.e. motivations to choose a product
or service, include both functional and quality needs. Moreover, these needs are both
task-related (e.g providing an email service, being easy to use) and non-task-related
(e.g. emotional connection) [2]. It is important to consider various user needs in SW
development since users’ decisions to buy and use a SW are influenced by not only task-
related, but also non-task-related needs [1, 2]. Hence, ultimate success of the developed
SW as well as business goals such as the market share, profit and company image will
be reached by satisfying various needs of users [5]. Task-related and non-task-related
user needs have been in focus for more than two decades in ID [1]. Nevertheless, in SE,
while RE has evolved enough to address part of task-related user needs via activities
to elicit, identify and evaluate functional requirements, dealing with non-task-related
quality requirements still is an open problem. In the following, a summary of the UX
related advancements in ID as well as some of the few related studies in SE is presented.

2.1 User Experience in Interaction Design

The term user experience has been around for more than two decades. Donald Norman
brought UX to wider knowledge in mid 1990s [1]. Hassenzahl et al. [6] define UX as “a
consequence of a user’s internal state (predispositions, expectations, needs, motivation,

358

Doctoral Symposium

mood, etc.), the characteristics of the designed system (e.g. complexity, purpose, usabil-
ity, functionality, etc.) and the context (or the environment) within which the interaction
occurs (e.g. organizational/social setting, meaningfulness of the activity, voluntariness
of use, etc.).” The definition shows that UX deals with both task-related and non-task-
related needs.

A UX framework, or model, consists of definitions of key UX elements, and their
functional relations [2]. Some of these frameworks such as [2] are merely theoretical,
and lack methodological contributions, empirical studies to support their results, or rec-
ommendations for development of SW with positive UX. On the other hand, in recent
years, frameworks have been developed that complement their theoretical contributions
with methodological and empirical results. For instance, in Mahlke’s framework [4],
along with defining UX, considering its various aspects, its composing elements and
their relation, there is a collection of suggested methods to measure various aspects
of UX. Moreover, Mahlke reports empirical data to support his contributions. Similarly,
Zimmermann’s framework [1] includes both theoretical and empirical results. However,
Zimmermann focuses on developing two new methods for measuring only two aspects
of UX and has a narrower view compared to Mahlke.

From SE practitioners’ perspective there are shortcomings associated with these
frameworks: (i) these frameworks are theoretical rather than practical (ii) they are de-
veloped based on a design and creation, as in ID, rather than an engineering, as in
SE, perspective (iii) they are high level, complex and abstract (iv) they are not easy
to understand for someone with a SE background (even in cases with methodological
contributions) (v) they lack guidance on how their construct of UX can be applied in
current SW development practices.

2.2 User Experience in SE

A related concept to UX in SE is the Quality in Use (QiU) model defined in ISO25010 [7]
(an extension to ISO9126 [8]). According to ISO25010, QiU is “the degree to which
a product or system can be used by specific users to meet their needs to achieve spe-
cific goals with effectiveness, efficiency, freedom from risk and satisfaction in specific
contexts of use.” Even though the QiU model does not include any definition of UX
or any direct reference to that concept, it has been applied in the context of UX by SE
researchers such as Doerr et al. [9].

Doerr et al. tried to discover the relationship between the Internal and External Qual-
ities (I&EQ) (the quality attributes introduced in ISO9126 [8]) – i.e. functionality, reli-
ability, usability, efficiency, maintainability, and portability– and UX that in their view
was equivalent to QiU. Beside the QiU model, the Doerr’s UX model was influenced
by the Technology Acceptance Model (TAM) [10]. The TAM model is considered to be
the most widely used theoretical model in the Information System (IS) discipline [11].
In this model, perceived usefulness and perceived ease of use are considered as the fun-
damental determinants of system use. Perceived usefulness concerns the task and goal
related aspect of using a system, while perceived ease of use concerns the effort of using
the application. While we appreciate Doerr et al.’s effort in opening a window to UX
in SE, and mapping the existing SE terminologies to the less explored concept of UX,
we find this study suffering from a weak theoretical basis, in particular, we do not agree

359

REFSQ 2012 Doctoral Symposium Proceedings

to their definition of UX. Doerr et al.’s findings on correlation between I&EQ and their
construct of UX cover only the task-oriented aspects of UX. Moreover, they have only
relied on those I&EQ that can be measured objectively and via questionnaires. While
this is an interesting step toward influencing some aspects of UX, we believe that the
model could be improved by applying the existing UX frameworks, and extending the
study to other aspects of UX, such as emotions, to support SE practitioners in those
aspects as well.

In a later study [12], Doerr et al. focused on measuring the future user satisfaction in
early stages of the SW development life cycle, i.e. the RE phase. They suggested using
a standard user satisfaction measurement tool, i.e. questionnaire, to prioritize the prod-
uct features and improve the product’s UX . In addition, they proposed a SW quality
model named AMUSE (Appraisal and Measurement of User Satisfaction). The model
was influenced by the QiU model in ISO9126 [8], and TAM. This study includes rec-
ommendations for tools to be used for measurement of user satisfaction. Nevertheless,
the AMUSE model is limited to effectiveness and productivity, i.e. the task-oriented
aspects of user satisfaction.

Before Doerr et al. [12], the idea of considering UX in RE was studied by Bentley et.
al. [13]. Where they suggested formally addressing emotional requirements that often
have been neglected in RE. Bentley et al. suggested improving the requirements elici-
tation methods to support emotion-related requirements. They provided no insight into
elicitation and documentation of these requirements, and the question of how these re-
quirements should be incorporated and included in established RE techniques remained
an open problem. Moreover, the study was limited to investigating three theories known
to contribute to computer game enjoyment, and no empirical data was provided to sup-
port whether these theories actually enhance UX in SW in general.

The concept of emotional requirements has been discussed by other researchers
such as [14–16] as well. Moreover, Callele et el. in [15] introduced the concept of expe-
rience requirements with an aim to use traditional RE techniques to improve the game
development practices. Beside emotions, other related concepts to UX in SE are val-
ues, motivations, belief, and hedonic aspects of SW. Thew and Sutcliffe [17] presented
a method called VBRE (Value Based Requirements Engineering) in order to support
understanding and dealing with soft issues in RE such as stakeholders’ emotions, val-
ues, and motivations. One advantage of the VBRE method is that it can be integrated to
the current elicitation activities in RE. Thew et al. have also suggested the VBRE tax-
onomy, a taxonomy of values and their consequences on the SW development process
and design. A section of this taxonomy includes emotions. We find such a taxonomy
useful in guiding the elicitation process. The emotion taxonomy can be extended to in-
clude more issues related to emotional requirements and UX in general. The concepts
of emotion, value, and belief and their importance in SW development is discussed by
Ramos et al. [18] as well. Finally, Nass et al. in [19] emphasized the importance of find-
ing the right balance between functional and hedonic aspects of SW. They presented a
SW development approach to bridge between business and user goals. Their approach
relies on task-oriented RE [20].

Another related study in the area of UX in SE is the FUN project [21]. The project
is based on a quality model called e4FUN [22]. This model emphasizes on joy-of-use

360

Doctoral Symposium

from a cognitive behavioral perspective, avoiding the subjectivity of experience. The
main focus of FUN is on pattern-based approaches in developing SW with positive UX.
The results of the project include interaction patterns called “Fun Patterns”, that can
be integrated into the SW development process. One of the results of FUN is KREA-
FUN [22], with a more general contribution to SE, discussed below.

In 2007, Kerkow et. al introduced a systematic approach to improve the joy-of-use
in SW products [22]. This approach is realized in form of a workshop named KREA-
FUN that aims to elicit and identify creative ideas of how to design for joy. In this
workshop, domain experts, users, SW engineers, developers, managers, support per-
sonnel, and training personnel sit together to investigate and improve the joy-of-use in
a SW. The authors refer to the process of eliciting and identifying ideas for design-
ing for joy-of use as engineering-joy-of-use. The study includes specific methods and
guidelines to add to the current practice in order to reach a better UX. In our view, SE
practitioners will benefit from methodological contributions such as KREA-FUN. Still,
such contributions can be improved by providing guidance on evaluating the effect of
applying the proposed methods, and approaches to motivate application of those meth-
ods in the SW organization. Moreover, we view this approach as an additive rather than
an incremental approach.

From other related studies in SE, we can refer to those discussing various ap-
proaches such as goal-oriented RE [23], scenario-based RE [24], and application of
ID methods in SW development [25, 26]. These studies usually aim to improve usabil-
ity or user acceptance, and do not go beyond task-related aspects of SW quality. Hence,
they do not directly deal with UX.

In summary, SE researchers approach UX from an engineering perspective [5]. They
try to find some physical and objective elements that influence UX and therefore make
it possible to consider UX in SE activities [5]. In SE, UX is treated the same as other
quality characteristics. While providing an opportunity to benefit from the existing ad-
vice on how to correctly measure various quality characteristics in SE, and to some
extent influencing UX during SW development, this approach leads to a narrow view
on UX since not all aspect of UX has so far been covered in the existing SW quality
models. Additionally, similar to UX frameworks, one shortcoming of the studies in SE
is that these studies not always provide empirical data to support their findings, and also
there is a lack of guidance on how to integrate these methods in current SE practices.

2.3 Summary

In conclusion, there is limited theory and practice concerning how SE, particularly RE,
practitioners should address UX. The UX frameworks lack practical guidelines and
methods for practitioners. On the other hand, the engineering approaches toward UX
suffer from not taking the whole aspects of UX into account and covering merely the
usability, i.e. task-related, aspect of UX. Additionally, these approaches lack empirical
data to support their results and taking current SE practice into account in providing
suggestions and guidelines for practitioners. What a SE practitioner needs is not yet
another theoretical UX contribution but empirical data to support the current theoreti-
cal and methodological contributions, and suggestions on how to improve the current
practice, as well as how to remove the current barriers in SW development activities.

361

REFSQ 2012 Doctoral Symposium Proceedings

3 Research Strategy

In this project, we aim to familiarize RE practitioners with what they should take away,
do differently, or add to their current practice in order to reach a better UX in devel-
oped SW. We focus on developing an incremental rather than a revolutionary approach
toward UX. Our research will focus on the intersection of two fields – SE and ID. The
goal is not to create a new UX framework, but to build on the existing advancements in
both SE and ID. Therefore, our contributions will be mainly methodological rather than
theoretical. Our research project includes three main steps followed by evaluation of the
research findings. Literature review, case study, and post-hoc analysis are the methods
we will apply in this study. In the following, we present our research strategy in more
details.

3.1 Step One: Defining UX for SE Practitioners

The first step is to provide an engineering definition for UX. This does not mean that we
necessarily should present a new definition of UX. We try to refine one of the current
definitions. For this purpose, we will review the related literature to find the existing
definitions.

3.2 Step Two: Discovering Barriers and Proposing Improvements

This step consists of three sub-steps: (i) developing and describing methods to discover
barriers to developing SW with positive UX in current SE practices (ii) discovering
barriers using the proposed methods. In particular, we are interested in high-level bar-
riers, for instance how the SW development organization communicates with the end
users (iii) proposing improvements to current practices based on the results from the
previous sub-step. One main result of step two is guidance on generating UX-related
requirements specification, i.e. describing the UX requirements in a simple and usable
form. For the purpose of this step, an industrial practice will be chosen as a case study
to investigate the current practice, and as a basis to discover barriers and suggest im-
provements.

3.3 Step Three: Proposing Methods for Evaluating UX-effects

It is important to be able to evaluate the effects of the previous steps on UX, so we
should propose methods to evaluate the effects of changes in the practice on UX. In
this step, we perform a post-hoc analysis of an already developed SW, preferably in the
same industrial practice chosen as the case study for step two.

3.4 Evaluating The Results

To evaluate and refine the findings of the project, a workshop will be held for a group of
SE practitioners. The workshop will be followed by a questionnaire to gather comments
and ideas on the results.

362

Doctoral Symposium

References

1. Zimmermann, P.G.: Beyond Usability–Measuring Aspects of User Experience. PhD thesis
(2008)

2. Hassenzahl, M.: The thing and I: understanding the relationship between user and product.
Funology: from usability to enjoyment (2003) 31–42

3. Jordan, P.W.: Designing Pleasurable Products: An Introduction to New Human Factors.
Taylor & Francis (2000)

4. Mahlke, S.: User experience of interaction with technical systems. PhD thesis, Berlin,
Technical university (2008)

5. Kerkow, D.: Don ’t have to know what it is like to be a bat to build a radar reflector-
Functionalism in UX. In Law, E., Vermeeren, A.P., Hassenzahl, M., Blythe, M., eds.: To-
wards a UX manifesto, COST294–MAUSE affiliated workshop. (2007) 19–25

6. Hassenzahl, M., Tractinsky, N.: User experience – a research agenda. Behaviour & Infor-
mation Technology 25(2) (March 2006) 91–97

7. ISO25010: Systems and software engineering – Systems and software Quality Requirements
and Evaluation (SQuaRE) – System and software quality models. Volume 2011. International
Organization for Standardization, Geneva, Swiss (2011)

8. ISO9126: Software engineering - Product quality. Technical report, International Organiza-
tion for Standardization, Geneva, Swiss (2001)

9. Doerr, J., Kerkow, D.: Total control of User Experience in Software Development – a Soft-
ware Engineering dream? In Law, E., Hvannberg, E., Hassenzahl, M., eds.: Proceedings of
the The Second COST294MAUSE International Open Workshop User ExperienceTowards
a Unified View. (2006) 94–99

10. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Informa-
tion Technology. MIS Quarterly 13(3) (September 1989) 319–340

11. Lee, Y., Kozar, K.A., Larsen, K.R.T.: THE TECHNOLOGY ACCEPTANCE MODEL :
PAST , PRESENT , AND FUTURE. Communications of the Association for Information
Systems 12(1) (2003) 752–780

12. Doerr, J., Hartkopf, S., Kerkow, D., Landmann, D., Amthor, P.: Built–in User Satisfaction –
Feature Appraisal and Prioritization with AMUSE. 15th IEEE International Requirements
Engineering Conference (RE 2007) (October 2007) 101–110

13. Bentley, T., Johnston, L., von Baggo, K.: Putting some emotion into requirements engineer-
ing. In: Proceedings of the 7th Australian Workshop on Requirements Engineering, Citeseer
(2002) 227–241

14. Callele, D., Neufeld, E., Schneider, K.: Emotional Requirements. IEEE Software 25(1)
(January 2008) 43–45

15. Callele, D., Neufeld, E., Schneider, K.: An Introduction to Experience Requirements. 2010
18th IEEE International Requirements Engineering Conference (September 2010) 395–396

16. Maiden, N.: Requirements and Aesthetics. IEEE Software 28(3) (May 2011) 20–21
17. Thew, S., Sutcliffe, A.: Elicitation of Values, Motivations and Emotions: The VBRE Method.

In: 1 st International Workshop on Values in Design - Building Bridges between RE , HCI
and Ethics Table of Contents, Lisbon, Portugal (2011)

18. Ramos, I., Berry, D.M., Carvalho, J.a.A.: The Role of Emotion, Values, and Beliefs in the
Construction of Innovative Work Realities. In: Proceedings of the First International Con-
ference on Computing in an Imperfect World. Soft-Ware 2002, London, UK, UK, Springer-
Verlag (2002) 300–314

19. Nass, C., Adam, S., Doerr, J., Trapp, M.: Balancing User and Business Goals in Software De-
velopment to Generate Positive User Experience. Volume 396 of Studies in Computational
Intelligence. Springer Berlin / Heidelberg (2012) 29–53

363

REFSQ 2012 Doctoral Symposium Proceedings

20. Adam, S., Doerr, J., Eisenbarth, M., Gross, A.: Using Task-oriented Requirements Engi-
neering in Different Domains Experience with Application in Reseach and Industry. In: 17th
IEEE International Requirements Engineering Conference, IEEE (August 2009) 267–272

21. Fun project. http://fun-of-use.org (2006)
22. Kerkow, D., Graf, C.: KREA-FUN : Systematic Creativity for Enjoyable Software Appli-

cations. In: FUN 2007 Proceedings: Workshop for Design Principles for Software That
Engages Its Users and Facing Emotions: Responsible Experimential Design. (2007)

23. Bolchini, D., Mylopoulos, J.: From Task-Oriented to Goal-Oriented Web Requirements
Analysis. In: Proceedings of the Fourth International Conference on Web Information Sys-
tems Engineering. WISE ’03, Washington, DC, USA, IEEE Computer Society (2003) 166—-

24. Sutcliffe, A., Maiden, N., Minocha, S., Manuel, D.: Supporting scenario-based requirements
engineering. IEEE Transactions on Software Engineering 24(12) (1998) 1072–1088

25. Sutcliffe, A., Thew, S., Jarvis, P.: Experience with user–centred requirements engineering.
Requirements Engineering 16(4) (May 2011) 267–280

26. Seffah, A., Jan, G., Desmarais, M.: Why HCI and Software Engineering Integration? (2010)
https://securedoc.gi.polymtl.ca/mdesmarais/CHISE/reference.shtml.

364

Doctoral Symposium

Method for the Conceptual Phase of an Integrated
Product and Service Design Applied to Construction

Project

Cyril MAUGER1, 2

1Department of Service Science & Innovation, Public Research Centre Henri Tudor, Luxem-
bourg, Luxembourg

2Laboratoire de Conception, Fabrication Commande, Arts et Métiers ParisTech, Metz, France
cyril.mauger@tudor.lu

Abstract. Requirements Engineering has largely contributed to the improve-
ment of the Software domain concerning client’s satisfaction. This proposal
aims to show how it could also contribute to improve the Construction domain.
The first thing concerns the identification and definition of a taxonomy based
on the Requirements Engineering. The second one aims to contribute to the
emergence of the Requirements Engineering discipline in the Construction do-
main. The solution presented here is based on the identification of similarities at
several levels between these two domains, including issues about client’s satis-
faction. This leads toward a knowledge transfer from Requirements Engineer-
ing to the Construction domain.

Keywords: Construction Sector, Architectural Programming, Conceptual
Phase, Requirements Engineering, Architecture/Engineering/Construction

1 Introduction

The architectural programming (aka briefing) phase consists in defining the
framework and expectations of a construction project through a statement of custom-
ers’ requirements [1]. It precedes the design phase handled by the architect who draws
possible plans from this statement. The requirements are gathered by the contracting
owner who consults stakeholders and future users of the building. For the elaboration
of the requirements document (i.e. the brief), the programmer who assists the con-
tracting owner specifies the characteristics of the building to design. The specifica-
tions are then used by the architect to design a building that will meet the clients’
requirements. The content of the requirements document are design parameters in-
cluding space planning (e.g. surfaces, volumes, and spatial organisation) but also
quality aspects (e.g. architectural expression, feeling, or beauty).

Current briefing practice is highly criticized by the Architectur-
al/Engineering/Construction (AEC) research community who considers it as inade-
quate, not sufficiently explicit, and limited [2]. They tends to be solution-focused [3],
provides description or rationale [4] of existing solutions rather than pure require-
ments [5, 6] and this before a thorough understanding of the client’s requirements [7].

365

REFSQ 2012 Doctoral Symposium Proceedings

This reasoning on solutions leads to multiple problems identified in the AEC sector.
Solution-oriented specifications over-constrain the architect leading to less innovation
or creativity in his design when he does not completely ignore the brief (i.e. the de-
mand). It also gives birth to a copy/paste phenomenon where existing solutions are
reused to provide the final solution. Unfortunately, very often, such an outcome does
not meet the implicit requirements hidden behind the solutions described by the client.

There is a need to change the way of thinking about a building from solutions to
requirements, in a more abstract but measurable way. Existing guides or methods [8,
9] propose a succinct definition of what define a building but their underlying concep-
tual structure lacks from rigor and analysis. Concepts are fuzzy, incomplete, and quite
independent whereas in reality, there are a lot of relationships between them. As a
result, the traceability of the requirements is totally lost when design issues required
modifications on the building’s plan. Those concepts are directly related to the cli-
ent’s ill-defined and vague vocabulary (e.g. needs, wishes, constraints, objectives)
compared to the architect’s one which is based on precise definitions associated to
physical solutions (e.g. net area, floor loads). There is a lack of definition for the con-
cepts which lead to a confusion in the expression of the clients’ demand. As a result,
clients do not master their demand and are not able to correctly evaluate the offer, i.e.
the proposition of the architects according to their requirements. Consequently,
changes occur all the time during the production of architectural plans, increasing
costs and delaying the ending. When the project is finally completed and built, and
started to be used, the retained proposal does not meet the client’s quality require-
ments and little can he do to control or even objectively contest the final result.

These observations led to the identification of a major bottleneck, presented for
this Doctoral Symposium: How to change the architectural programming activity,
from an ill-defined analysis activity producing over-specified briefing based on expe-
rience, to a requirement oriented activity based on engineering? AEC desperately
lacked of theoretical foundations to clearly and completely describe a building system
with high level abstract concepts rather than concrete solution objects. Other engi-
neering domains (i.e. Software Engineering, Mechanical Engineering, and Industrial
Engineering) are well supported on this point by well-tried methods (e.g. Require-
ments Engineering), approaches (e.g. KAOS, i*), and techniques (e.g. use case, class
diagram). This paper is about how Requirements Engineering (RE) could help AEC
building this foundation from its knowledge and experience?

2 Relevance

Quality of the offer is mainly driven by quality of the demand. This statement is
true for software products concerning requirements [10]. In fact, the quality of the
demand, i.e. quality of the requirements [11], could be identified as one of the causes
of software engineering project failure regarding clients’ satisfaction [12]. Its impact
on the product development process in terms of costs and delays increases at each
step [13]. This well-known issue revealed by Boehm and Papaccio for software engi-
neering [13] is widely used in AEC project management to explain changes manage-
ment issue. Bad definition of the architectural problem leads to changes costing each
time more money and more time to correct. It shows that the interest of better defin-

366

Doctoral Symposium

ing the product or system to design could have major impact on quality, costs and
delays results.

Providing a view of the concepts required for structuring the client requirements
at the architectural programming step would guarantee a better integration of them in
the design by the architect. Moreover, this would empower the client during the eval-
uation of the architects’ proposal because knowing well what was demanded in first
place allows him to better appreciate the final result. The result of my research would
provide enough elements to the client for making a clever decision about the archi-
tects’ proposal regarding his demand (i.e. compliance [14]).

The last benefit concerns the release of the architect creativity and innovation in
the design while keeping focus on the clients’ requirements. Architects are often
afraid of the content of a brief and perceive it as an amount of insoluble constraints
limiting their capacities. By providing a conceptual definition of a building, structured
around concepts (e.g. requirements, needs, objectives), it would be easier to express
true requirements rather than description of solutions. Moreover, such a structure
could be implemented in a database or software that would help the architects dealing
with this huge amount of information in a quicker and easier way during the design
process [15].

3 Contribution

Two main issues are addressed in my research proposal. The first one concerns
the identification and definition of a taxonomy for AEC practitioners i.e. a systematic
classification of the concepts that are of interest for clients during the briefing phase.
The second one consists in moving the current architectural programming practice
from a solution-oriented perspective to a problem driven perspective. In short, in
comparison with what happened in the software domain in the 80s, it aimed to con-
tribute to the emergence of a RE discipline in the construction domain.

Fig. 1. First proposition of AEC taxonomy based on RE concepts

The preliminary taxonomy (Fig. 1) was structured around 3 levels: strategic, op-
erational, and technical. The strategic level reflected the view and vocabulary of the
client (cf. Table 1) about his business and the integration of the construction project
in it. Starting from general goals (e.g. provide setting for education of 600 children),
concrete objectives (e.g. keep the 600 children dry when it’s raining) and con-
straints (e.g. parents cannot park inside the school) were defined. Obstacles (e.g. the
600 children need space to play when it is raining during breaks) could prevent goals’

367

REFSQ 2012 Doctoral Symposium Proceedings

achievement in a domain [16]. Based on this first set of concepts, a global system
could be designed with a high level of description (e.g. a school, an education sys-
tem).

At the operational level, the global system started to be defined from an external
point of view (i.e. the system is a black box) beginning with elicitation of the agents
(e.g. parents, children) that would interact or be involved with it. These agents were
part of the system’s environment. Assumptions (e.g. a child will not hurt another one
if an adult can see him) were formulated about them to anticipate potential behaviour
of the agents with or within the system. According to an objective or constraint (e.g.
children must always feel safe at school) and assumptions about agents, require-
ments (e.g. a child should potentially always be seen by an adult inside and around
the school) about the system were specified.

The system was considered as a white box at the technical level. Previous levels
described what the system must do or be; this one developed how it would do it using
architect’s vocabulary. The defined requirements were then refined into specifica-
tions using domain knowledge [17]. A set of specifications could be achieved by a
solution. Each solution was composed of internal components of the system and rela-
tion between them. Those components were classified into building (e.g. director’s
office), organisation (e.g. teaching or surveillance) and resource (e.g. teacher, white
board).

All of these concepts are inter-related and allow going back and forth between
each concept. Based on this RE classification, information about the building, the
service and the business of the “building system” could be structured and prioritized
in time and importance. Thus, this first taxonomy proposed a theoretical way to estab-
lish a traceability of the requirements in AEC and the specifications from the goals to
the solutions of the architects. It would help programmers dealing with the amount of
information and provide rationales to the clients for modifying architects’ proposal to
better meet his requirements. Nevertheless, in practice, this traceability is not that
simple to put in place [14].

4 Analysis

Berry and Wieringa already identified that there are similarities between AEC and RE
[5, 18, 19]. They concluded that RE could learn from AEC, but it is reciprocal: AEC
could learn a lot from RE and that is the point of this PhD work. Berry in [18] pro-
posed a set of similarities around the activities of build or remodel a house and devel-
op or enhance a software. This document goes further in the identification of similari-
ties that can complete his analysis. The roles in AEC and RE are quite similar, Table
1 gives a more complete description than Berry [18] of the different engaged roles.
The relationships between each role are the same in AEC and RE as shown in [18].
Issues concerning the definition of the artefact to design [19] and importance of this
conceptual phase [6, 10] (i.e. architectural programming and requirements manage-
ment) are also the same.

Another similarity concerned the type of deliverables. Three deliverables can be
counted in AEC: the Statement of Needs (SoN, “préprogramme” in French), the Stra-
tegic Brief (SB) and the Design Brief (DB) [3]. In RE, this correspond to some RE

368

Doctoral Symposium

classification of deliverable into: the Customer Requirements Specification (CRS),
the System Requirements Specification (SysRS), and the Software Requirements
Specification (SRS) [20]. SoN and CRS contain a coarse description of the system
expressed with original statements transferred verbally from the client to the brief
writer (aka programmer), or directly provided to the requirements engineer (aka sys-
tem analyst). SB and SysRS are more accurate in their content. They gather infor-
mation, requirements required by the project team to establish a “real” project or sys-
tem. And finally, DB and SRS are both developed from the previous deliverable level
and specify the building or software. Building and software are only parts of the glob-
al project or system to design. Each deliverable gives more details about the artefact
to design, from high level requirements to low level specifications.

Table 1. Similarities of roles between AEC and RE

Software Engineering AEC Description
Client Contracting Owner A person or organisation who pay for a system development

User/Agent Operator/Customer A person who uses the functionality provided by a system to
deliver a product or service

Customer User A person or organisation who receives a product or service [20]
Requirements Engineer Programmer A person who deals with stakeholders’ requirements and pro-

vides deliverables to designers
Developer Architect A person who designs a system to build from deliverables

Programmer Builder/Contractor A person who makes a system “real”

The first elements of analysis provide a vision of the global building system as
composed of three parts (Fig. 1): a product part (i.e. the building), a service part (i.e.
the organisation installed inside it) and a human part (i.e. people who work inside the
building for the organisation). A state of the art on the different conceptual design
approaches reveals that each domain is mainly focused on its own item/artefact and
did not deal with the global system to develop.

In Software Engineering, the system to design is composed of three parts: a soft-
ware part, a hardware part and a human part. It is true that RE is mainly focused on
the software part. By analogy with a building system, this software part corresponds
to its service part, and the hardware part to the building itself. Based on this quick
analogy, the definition of a building or rather its service or organisation part would be
done using concepts that defined software. These concepts were one of the missing
elements in AEC to define properly a building system.

From the identification of these similarities between AEC and Software Engineer-
ing, an analysis of the RE literature and practices was led so as to identify potential
contribution of each. RE and Goal-Oriented Requirements Engineering (GORE) were
retained and studied to that extent. Even if their contribution was useful at an academ-
ic level at first because AEC lacks of it, the industry application would have to be
checked. GORE was already used in industry through Enterprise Architecture to rep-
resent the strategic level of a system. Thus, its contribution to AEC was appropriate
for this kind of missing information in AEC.

369

REFSQ 2012 Doctoral Symposium Proceedings

5 Research method

The adopted research method comes from Design Science and is structured around
two axes. The first axis concerns the research activities in Design Science that are:
build and evaluate. According to March & Smith [21], build refers to the construction
of the artefact and aims at demonstrating that such an artefact can be constructed.
Evaluate refers to the development of criteria and the assessment of the artefact’s
performance against those criteria. The second axis concerns the research outputs.
Four kinds of outputs are defined and used to describe the PhD methodology: con-
structs, models, method, and instantiation.

The first output consists of building the constructs. A literature review of the con-
cepts used in RE and other engineering domain (e.g. mechanical engineering) would
allow me to gather the right concepts to define the building system. The main struc-
ture of these concepts comes from the RE as demonstrated in the section 3. This con-
ceptual structure aims to be close to the clients’ vocabulary and will be completed
with the vocabulary of the architects and programmers on a technical level. This tech-
nical level will be built from vocabulary used in current AEC research (e.g. in Build-
ing Information Modelling [22]) or practice (e.g. ISO Standard [23]) to be used and
useful.

In order to verify this structure, a sample of case studies from past construction
projects (first case study retained: a multimedia library built in 2008 in Brittany,
France) and interviews with AEC experts (i.e. architects, programmers, and contrac-
tors) would be led. For each artefact including constructs, a first case study would be
implemented by the PhD student. Other case studies would be outsourced to trainees
or students in a study project. This assessment aims to ensure feasibility, relevance,
and completeness of the constructs and to test if the proposed solution is useful and
usable by professionals of the AEC domain. A first measurement would be to com-
pare the original case studies Design Brief with the corresponding implemented con-
structs. Difference between information provided in the original document and poten-
tial information generated following the constructs would illustrate the value added by
it. A second measurement would be to ask other people (e.g. architectural students,
programmers, architects) to use and complete such a structure on their own and gather
their feedback on it. Last measurement would consist in processing the information
implemented in a database to produce a different Design Brief that would satisfy at
least the same requirements. Of course, all retained concepts from RE would not be
necessarily useful in AEC even if their interest was highlighted. There was also no
absolute certainty that architects and programmers would change their way of work-
ing using this structure yet. Thus, further investigations were required.

RE provided leads to answer AEC issues presented in this dissertation but it was
not enough. On top of these elements related to RE, other engineering domain con-
cepts would be studied to complete the building’s constructs. These concepts would
come from a state of the art on conceptual design methods in manufacturing and in-
dustrial engineering. First literature review has already revealed that conceptual de-
sign methods from other engineering domain were applied to architectural program-
ming [15]. None of them started from a level of requirements this high including
traceability to low level specifications. In this PhD study, a building would be speci-
fied from an advanced description of the organisation that would live inside.

370

Doctoral Symposium

6 Progress and Future Works

This PhD work has begun in February 2011. The first months were mainly dedicated
to the understanding of the AEC domain in one part (mainly the architectural pro-
gramming), and a more synthetic understanding and analysis of the conceptual phase
(i.e. requirements phase) in other engineering domains (e.g. Manufacturing Engineer-
ing, Software Engineering). From a global analysis of this literature review, the re-
search method was chose and detailed.

In the current state of the work, a conceptual view was designed and it integrated
part of the operational level of constructs without the timing structure (i.e. definition
of the deliverables’ content). A database would be designed in May quickly followed
by the evaluation process of constructs with experts and case study. The objective is
to end the constructs part before June 2012.

The building of models would start right after the database, around beginning of
June 2012, and their evaluation would be planned for around September 2012. The
end of the year 2012 would be dedicated to the IT proof of concept, tool specification
and to the method. The tasks plan for the year 2013 would hopefully include the in-
stantiation of the constructs, models, and method on a case study or two. It would
mostly involve the writing up of the PhD thesis.

Acknowledgements. The present project is supported by the National Research Fund,
Luxembourg.

References

1. Abdul-Kadir, M., Price, A.: Conceptual phase of construction projects. International Jour-
nal of Project Management. 13, 387-393 (1995).

2. Yu, A.T.W., Shen, G.Q.P., Kelly, J., Hunter, K.: Comparative Study of the Variables in
Construction Project Briefing / Architectural Programming. Journal of Construction Engi-
neering and Management. 122-138 (2008).

3. Yahya, I.A., Rahman, H.A., Berawi, M.A., Karim, S.B.A., Yee, K.L.: Value Management
in analyzing project brief. Quantity Surveying International Conference. p. 12. , Kuala
Lumpur, Malaysia (2007).

4. Kamara, J.M., Anumba, C.J., Evbuomwan, N.F.O.: Client requirements processing in con-
struction: a new approach using QFD. Journal of architectural engineering. 5, 8 (1999).

5. Berry, D.M.: More requirements engineering adventures with building contractors. Re-
quirements Engineering. 8, 142–146 (2003).

6. Zowghi, D., Coulin, C.R.: 02 Requirements Elicitation�: A Survey of Techniques, Ap-
proaches, and Tools. Engineering and Managing Software Requirements. pp. 19-46.
Springer Verlag (2005).

7. Kamara, J.M., Anumba, C.J., Evbuomwan, N.F.O.: Capturing client requirements in con-
struction projects. Thomas Telford Ltd (2002).

8. Certu: Pour des bâtiments durables - Guide et outils de programmation. (2010).
9. MIQCP: Programmation des constructions publiques. Le Moniteur, Mission Interministé-

rielle pour la Qualité des Constructions Publiques (2001).

371

REFSQ 2012 Doctoral Symposium Proceedings

10. Hickey, A.M., Davis, A.M.: An Ontological Approach to Requirements Elicitation Tech-
nique Selection. In: Sharda, R. and Voss, S. (eds.) Ontologies - A Handbook of Principles,
Concepts and Applications in Information Systems. pp. 403–431. Springer (2007).

11. ISO/IEC: FDIS 9126-1 Software Engineering - Product quality - Part 1_Quality model.
(1999).

12. Standish Group: CHAOS report. (1995).
13. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE Trans-

actions on Software Engineering. 14, 1462-1477 (1988).
14. Arkley, P., Riddle, S.: Overcoming the Traceability Benefit Problem. , Newcastle (2005).
15. Mauger, C., Schwartz, T., Dantan, J.-Y., Harbouche, L.: Improving users satisfaction by

using requirements engineering approaches in the conceptual phase of construction pro-
jects: The elicitation process. 2010 IEEE International Conference on Industrial Engineer-
ing and Engineering Management (IEEM). pp. 310–314. IEEE (2010).

16. Lamsweerde, A.V.: Goal-Oriented Requirements Engineering - A Guided Tour. 5th IEEE
International Symposium on Requirements Engineering RE’01. p. 14. , Toronto (2001).

17. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Transactions
on Software Engineering and Methodology (TOSEM). 6, 1–30 (1997).

18. Berry, D.M.: Software and House Requirements Engineering�: Lessons Learned in Combat-
ing Requirements Creep. Requirements Engineering. 242-244 (2000).

19. Wieringa, R.J.: Software requirements engineering: the need for systems engineering and
literacy. Requirements Engineering. 6, 132–134 (2001).

20. Glinz, M.: A Glossary of requirements engineering terminology. International Require-
ments Engineering Board (2011).

21. March, S.T., Smith, G.F.: Design and natural science research on information technology.
Decision Support Systems. 15, 251-266 (1995).

22. Kiviniemi, A.: Requirements management interface to building product models. Stanford
University Stanford, CA, USA (2005).

23. ISO: Normes de performance dans le bâtiment - Liste de contrôle consultative - Contenu
d’un programme de conception dans l'industrie du bâtiment. (1994).

372

Doctoral Symposium

The Severity of Undetected Ambiguity in Software
Engineering Requirements

Cristina Ribeiro

Department of Computer Science, University of Waterloo, 200 University Avenue West,

 Waterloo, N2L 3G1, Canada, cribeiro@uwaterloo.ca

Abstract. This paper discusses the potential negative effects of ambiguous
software engineering requirements documents, and discusses a method of quan-
tifying the severity of ambiguities in at least three software projects. The author
theorizes that most ambiguities are naturally resolved through the process of
software engineering and that the types of ambiguities that are likely to persist
are those that people are not aware of. These types of ambiguities are most like-
ly to suffer from subconscious disambiguation. When an ambiguity is disambi-
guated correctly, there are no negative effects, but when an ambiguity is disam-
biguated incorrectly, problems may arise. By identification of ambiguities that
are most likely to suffer from subconscious disambiguation, we will calculate
the costs associated with them, for each of the three software projects.

Keywords: Ambiguity, Costs, Effects of Ambiguities, Natural Language, Re-
quirements Specifications, Requirements Engineering, Subconscious Disam-
biguation.

1 Introduction

Requirements engineering (RE)’s primary goal is to capture in a requirements specifi-
cation (RS) all of the requirements that the client, users, and all stakeholders believe
to be imperative in the computer-based system (CBS) being developed. Ambiguity in
a RS could cause programmers to implement the CBS incorrectly, from the client’s
viewpoint, resulting in major code re-writes, leading to delays in delivery and intro-
ducing even more defects.

Almost all RSs are written in natural language (NL) [1]. Even when a RS is written
with a formal language or UML diagrams, it still begins in NL [2]. NLs are inherently
ambiguous. Therefore, in today’s practice of RE, ambiguous RSs are pervasive [12].

Project failure has often been attributed to ambiguities in RS documents. For ex-
ample, Gause lists too much unrecognized disambiguation in RSs as one of the five
most important sources of requirements failure [3]. This attribution claim has not been
conclusively proven, empirically, but this claim has fueled research in methods and
tools for removing ambiguities in RSs, e.g., for writing less ambiguous requirements
[5-9], for detecting ambiguities with tools [10-16] or manually [17-19], and for using
restricted languages to write RSs [20-22].

373

REFSQ 2012 Doctoral Symposium Proceedings

Time is the single most important factor in software engineering. Since fixing a
bug late in a software development life cycle is expensive [4], it is important to try to
find all wrongly disambiguated ambiguities early. Doing so requires finding ambigui-
ties early. The earlier an ambiguous requirement is found the less expensive it is to fix
it. The least expensive time to find ambiguous requirements is in the analysis phase,
before any development begins. The paradox is that finding ambiguities is expensive
as it involves multiple, time-consuming, and focused inspections.

1.1 Success Criteria

There is little empirical evidence to support the claim that ambiguous requirements
cause project failure. In a study on the effects of ambiguity on project success, de
Bruijn analyzed one failed project and was unable to pinpoint the reason for the fail-
ure. He concluded there were a variety of factors that played a role in the failure of
the project.

The difficulty with failed projects is that the reason for their failure is already
known. If the reason for failure was not ambiguity then the probability of also ambi-
guity being the problem, is low. Due to this difficulty and the complexity of analyzing
a failed project for ambiguities, the deliberate approach in this research is to quantify
multiple successful projects to learn about their severity.
 It is important to note that projects can be only seemingly successful, in that they
may contain hidden defects that have not yet been found. I am trying to demonstrate
that it is worth the effort required to search for really tough ambiguities. The search
will try to find tough ambiguities that get overlooked and lead to a false sense of
project success. I am searching for something serious that was overlooked and is the
result of an undetected ambiguity that suffered from SD.

The success criteria for this research includes quantifying in time and costs asso-
ciated to the severity identified for all ambiguities verified to have suffered from SD.
Using this data we can answer the following question:
Which is more expensive:

1. letting subconsciously disambiguated ambiguities cause their damage and
then be fixed late, or

2. doing enough focused inspections on the RS to find the ambiguities early be-
fore development starts?

1.2 Significance

Knowing the answer to the question stated above, enables requirements analysts and
project managers to allocate their resources efficiently. They can decide whether it
benefits them to use any of the ambiguity detection, avoidance, and or elimination
tools that exist.

This research will determine how many SD ambiguities there are in this set of
successful projects. The quantification of the severity of ambiguities suffering from
SD and the costs associated with them is currently unknown.

374

Doctoral Symposium

There are also significant scientific contributions as a result of this research. The
research and scientific community will benefit through the furthering of the body of
knowledge, through the use of the research findings, the collected empirical data and
the method used to collect this data. Similarly conducted experiments are highly valu-
able to industry and the software engineering community. This enables researchers to
further this knowledge and it opens up many new related research hypotheses, which
require examination.

2 Research Problem

A problem with all of these tools and methods to avoid or detect ambiguities is that
we don’t actually know if any of them are worth the effort. It would be valuable to
know exactly what the benefits are and if ambiguity is in fact costly. De Bruijn [23]
tried to work on solving this problem.

His overall goal was to determine the effect of ambiguity in a project’s RS on the
project’s success. He analyzed a RS document for one failed CBS development
project. With his analysis he attempted to answer the research questions [23]:

1. How many requirement statements are ambiguous?
2. How many problems were caused by ambiguous requirements?

De Bruijn’s analysis found that only one defect in the CBS was caused by ambi-

guous requirements. The independent test team and the third party development team
had been able to work through all the other ambiguities and successfully implement
the specified CBS.

De Bruijn’s conclusion was that for the RS and CBS he examined, the ambiguities
that remained were not critical and had nothing to do with the failure. So he ques-
tioned whether focusing on ambiguities with special inspections and tools during RS
is cost effective. Perhaps the normal conversation among stakeholders is sufficient to
find the RS ambiguities that would cause defects in the developed CBS. As did de
Bruijn, I wonder if ambiguity has an effect on project success and how much effort
should be devoted to the avoidance and or detection of ambiguous requirements.

My research questions are refinements of de Bruijn’s. The research questions are:
1. How many ambiguous requirements suffer from SD?
2. How many problems are caused by these ambiguities?
3. What is the severity of these problems?
4. Is the effort required to identify these ambiguities worth it?

In my research, a different approach is taken to deal with the size explosion prob-
lem he encountered. This approach is outlined in detail in the next section, the pro-
posed solution.

375

REFSQ 2012 Doctoral Symposium Proceedings

3 Proposed Solution

3.1 Dealing with the Size Explosion Problem

De Bruijn’s strategy included considering all kinds of ambiguities for one failed
project. He ended up taking a random sample of the ambiguities, due to the large
number of ambiguities he found and the inordinate amount of time it would take for
him to review them all. This random sampling could have missed a lot of ambiguities,
some of which may have caused their damage through the implementation of them in
the code. Ambiguous requirements that cause a lot of damage are referred to as “show
stoppers”. Show stoppers may be too infrequent for them to be caught adequately
with a random sampling. The fact that de Bruijn didn’t catch any doesn’t mean they
don’t exist. If you sample only 10% of the requirements, then you have a 90% chance
of missing a show stopper, because show stoppers are so infrequent.

De Bruijn found that very few ambiguities affected development, because normal
conversations during requirements analysis takes care of the ones people know about.
The result was the ambiguities he found had no effect for the very reason that they
were resolved through the natural process of software engineering. For example, a
requirements engineer may ask a client “What do you mean by that?” to get more
information. Also, everyone is aware of the problem of coordinating “and”s and
“or”s, because the problem is encountered in everyday life, as in restaurant menus.
Customers pick the interpretation that gives them the most, and the restaurant picks
the interpretation that gives the customers the least.

I am using a different approach to deal with the size explosion, one that I believe
is likely to produce better results. My strategy is to focus on the ambiguities likely to
have been missed by stakeholders during requirements analysis and RS production,
ambiguities that are likely to remain after analysis of the requirements by the stake-
holders. These ambiguities should be more likely to cause expensive problems, re-
quiring fixing late in the development.

3.2 Subconscious Disambiguation

The ambiguities that are likely to be missed by the stakeholders are those that suf-
fer subconscious disambiguation (SD). SD of an ambiguity occurs when the reader or
hearer of an ambiguous statement is not aware of the ambiguity and believes that his
or her first understanding of the statement is the only possible understanding. In some
cases, SD leads to the correct understanding relative to the meaning the writer in-
tended, and sometimes it does not. When SD of an ambiguity in a RS leads to an
understanding different from the client’s original intent, the final CBS delivered to the
client may be incorrect.

376

Doctoral Symposium

4 Research Method

De Bruijn analyzed one RS document for a failed project. I will be analyzing at least
three RS documents, each belonging to a successful project. The RS documents will
be analyzed to identify any subconsciously disambiguated ambiguities and to deter-
mine the effects they had on their projects.

The rest of this section describes how data will be collected, how the requirements
will be inspected, and how severity of any ambiguities identified is measured. Using
this procedure, I expect to be able to answer the research questions posed in Section 2.

We have a partnership with a major company, hereinafter referred to as “X”. X has
supplied high quality RS documents for three major CBSs that have been successfully
implemented.

The number of documents available from X is probably not enough to have statis-
tically significant results. However, each document is quite lengthy, averaging 90
pages. The amount of time required to carefully review these documents manually, is
significant. Additional similar research will increase the total data sample and will
strengthen the results found in this study.

I will review each RS in its entirety, searching for only ambiguities that are likely
to have suffered SD. Once I have my list of ambiguities likely to have suffered SD, I
will set up a meeting with X’s chief requirements specification analyst. We will ex-
amine the histories of the developments of the CBSs for signs that the ambiguities I
found causes development problems. The severity of these development problems
will be estimated. These severities will be used to answer the research questions. Note
that it is possible that I might find a problem that the X developers never even thought
about and that does not show up in any project history. The company should be inter-
ested in hearing about such a problem, because it points to a potential flaw that has
not yet been discovered. If such a problem proves to be severe, the argument that
searching for ambiguities during RE is important is strengthened.

I am in the midst of the review of the first RS. Even when considering only ambi-
guities likely to have suffered SD, I have identified more than 300 ambiguities in the
first RS document. It is unrealistic to expect the X analyst to devote the time neces-
sary to determining the effect of each ambiguity. As a result, I am currently trying to
determine a way to rank these ambiguities by likelihood of being show stoppers, with
the intention of presenting to the X analyst the most likely show stoppers first.

The ranking process consists of three steps. The first step is grouping many simi-
lar ambiguities together minimizes the number of ambiguities to review. The second
step is analyzing and documenting the possible alternate meanings and potential fore-
seeable effects for each ambiguity recorded. The third step is ranking the ambiguities
in order of their potential severity level. At this point in the research, I can only rank
these ambiguities in terms of what would likely be a show stopper. Once I confirm
which ambiguities actually caused damage and assess how much damage they cause, I
can then create a better categorization for the ranking of ambiguities.

377

REFSQ 2012 Doctoral Symposium Proceedings

5 Preliminary Results

At this point the requirements document for one of the three successful projects, has
been reviewed. The RS document was reviewed in its entirety, for ambiguities likely
to suffer from SD. Through the analysis process other ambiguities, not likely to have
suffered from SD, were identified. In total there were 300 ambiguities, in the docu-
ment, 41 pages in length. A subset of 24 ambiguities, were identified to have likely
suffered from SD.

6 Research Progress

I am in the early stages of my research. Currently, only one of three RS documents
has been reviewed. All the ambiguities likely to have suffered from SD have been
identified and ranked by likelihood of being show stoppers. I am preparing to present
these findings to the X analyst. The review of the first document has been going
slower than I expected because I have had to refine my research method as I learned
new things during the review. The other two reviews should go faster. I estimate that
it will take another 8 to 10 months to gather the data necessary to answer the research
questions.

References

1. Mich, L., Franch, M., and Novi Inverardi, P.: Market research for requirements analysis
using linguistic tools. In: Requirements Engineering, 9, (1 & 2), pp. 40-56 (in No. 1) 151
(in No. 2). (2004)

2. Berry, D.M.: Ambiguity in Natural Language Requirements Documents. In: Lecture Notes
in Computer Science, pp. 1-7. (2008)

3. Gause, D.C.: User DRIVEN Design – The Luxuray that has Become a Necessity. In: A
Workshop in Full Life-Cycle Requirements Management, ICRE 2000 Tutorial T7,
Schaumberg, IL, (2000)

4. Boehm, B.W.: Software engineering economics. Prentice-Hall (1981)
5. Goetz, R., Rupp, C.: Regelwerk natuerlichsprachliche methode. Technical report, Sophist

(1999), http://www.sophist.de
6. Berry, D.M., Kamsties, E.: The syntactically dangerous all and plural in specifications. In:

IEEE Software 22, 55–57 (2005)
7. Berry, D.M., Kamsties, E., Krieger, M.: From contract drafting to software specification:

Linguistic sources of ambiguity. Technical report, University of Waterloo, Waterloo, ON,
Canada (2003), http://se.uwaterloo.ca/ dberry/handbook/ambiguityHandbook.pdf

8. Kovitz, B.L.: Practical Software Requirements: A Manual of Content and Style. Manning,
Greenwich, CT, USA (1998)

9. Dupré, L.: Bugs in Writing: A Guide to Debugging Your Prose, 2nd edn. Addison-Wesley,
Reading (1998)

10. Osborne, M., MacNish, C.: Processing natural language software requirement specifica-
tions. In: Proceedings of the International Conference on Requirements Engineering (ICRE
1996), pp. 229–236 (1996)

11. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifica-

378

Doctoral Symposium

tions. In: Proceedings of the Nineteenth International Conference on Software Engineering
ICSE 1997, pp. 161–171. ACM Press, New York (1997)

12. Mich, L., Garigliano, R.: Ambiguity measures in requirement engineering. In: Feng, Y.,
Notkin, D., Gaudel, M. (eds.) Proceedings of International Conference on Software—
Theory and Practice ICS 2000. Sixteenth IFIP World Computer Congress, pp. 39–48. Pub-
lishing House of Electronics Industry, Beijing (2000)

13. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity
identification and measurement in natural language requirements specifications. Require-
ments Engineering Journal 13, 207–240 (2008)

14. Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G.: A new quality model for
natural language requirements specifications. In: Proceedings of the International Work-
shop on Requirements Engineering: Foundation of Software Quality, REFSQ 2006 (2006)

15. Tjong, S.F., Hartley, M., Berry, D.M.: Extended disambiguation rules for requirements
specifications. In: Proceedings of Workshop in Requirements Engineering, WER (2007),
http://wer.inf.pucrio.br/index.html

16. Tjong, S.F.: Avoiding Ambiguity in Requirements Specifications. PhD thesis, Faculty of
Engineering & Computer Science, University of Nottingham, Malaysia Campus, Semenyih,
Selangor Darul Ehsan, Malaysia (2008)

17. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents
using inspections. In: Lawford, M., Parnas, D.L. (eds.) Proceedings of the First Workshop
on Inspection in Software Engineering (WISE 2001), pp. 68–80 (2001)

18. Kamsties, E.: Surfacing Ambiguity in Natural Language Requirements. PhD thesis, Fach-
bereich Informatik, Universitaet Kaiserslautern, Kaiserslautern, Germany (2001); also Vo-
lume 5 of Ph.D. Theses in Experimental Software Engineering, Fraunhofer IRB Verlag,
Stuttgart, Germany (2001)

19. Denger, C.: High quality requirements specifications for embedded systems through author-
ing rules and language patterns. Master’s thesis, Fachbereich Informatik, Universitaet Kai-
serslautern, Kaiserslautern, Germany (2002)

20. Comer, J.: An experimental natural-language processor for generating data type specifica-
tions. SIGPLAN Notices 18, 25–33 (1983)

21. Enomoto, H., Yonezaki, N., Saeki, M., Chiba, K., Takizuka, T., Yokoi, T.: Natural lan-
guage based software development system tell. In: O’Shea, T. (ed.) Advances in Artificial
Intelligence, ECAI 1984, pp. 721–731. Elsevier, Amsterdam (1984)

22. Fuchs, N., Schwertel, U., Schwitter, R.: Attempto controlled english (ACE) language ma-
nual version 3.0. Technical Report No. 99.03, Institut fuer Informatik der Universitaet Zu-
erich, Zuerich, Switzerland (1999)

23. de Bruijn, F., and Dekkers, H.: Ambiguity in Natural Language Software Requirements: A
Case Study, In: Requirements Engineering: Foundation for Software Quality, pp. 233-247.
(2010)

379

REFSQ 2012 Doctoral Symposium Proceedings

Previously published ICB -‐‑ Research Reports

Previously published ICB -‐‑ Research Reports

2012

No 51 (May)

 Frank, Ulrich: “Specialisation in Business Process Modelling: Motivation, Approaches and Limitations”

No 50 (February)

 Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz, Philipp; Schütz,
Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-‐‑Studien – Eine Metastudie zu
serviceorientierten Architekturen”

2011

No 49 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Focus on Business Processes”

No 48 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Focus on Organizational Struc-‐‑
ture”

No 47 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Requirements and Core Diagram
Types”

No 46 (December 2011)

 Frank, Ulrich: “Multi-‐‑Perspective Enterprise Modelling: Background and Terminological Foundation”

No 45 (November 2011)

 Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur
Erstellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)
Berenbach, Brian; Daneva, Maya; Dörr, Jörg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;
Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,
Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and
RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),
and the REFSQ 2011 Doctoral Symposium“

No 43 (February 2011)

 Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture – 2nd Edi-‐‑
tion”

2010

No 42 (December)

 Frank, Ulrich: “Outline of a Method for Designing Domain-‐‑Specific Modelling Languages”

No 41 (December)

 Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewählte Aspekte des Cloud-‐‑Computing aus einer
IT-‐‑Management-‐‑Perspektive – Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):
“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-‐‑
ty. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC“

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-‐‑Konzeption für den Studien-‐‑
gang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswissenschaften der Universität Duis-‐‑
burg-‐‑Essen“

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen von CIOs und
WI-‐‑Professoren“

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-‐‑
ity Modelling of Software-‐‑intensive Systems”

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verständnis der IT-‐‑Governance -‐‑ An-‐‑
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.:“Considerations on Handling Link Errors in
STCP“

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-‐‑
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: „Einsatz von Social Software in Unternehmen – Studie
über Umfang und Zweck der Nutzung“

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kütz, Martin; Rüding, Otto; Schauer, Hanno; Strecker, Stefan:
„Leitbild IT-‐‑Controller/-‐‑in – Beitrag der Fachgruppe IT-‐‑Controlling der Gesellschaft für Informatik
e. V.“

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-‐‑Referential Enterprise Sys-‐‑
tems – Requirements, Conceptual Foundation and Design Options”

Previously published ICB -‐‑ Research Reports

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: „Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)“

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-‐‑
iability Modelling of Software-‐‑intensive Systems”

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming
Exercises with JACK“

No 27 (December 2008)
Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im
deutschsprachigen Raum -‐‑ Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Müller-‐‑Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-‐‑Touch beim Softwaredesign am
Beispiel der CRC Card-‐‑Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-‐‑Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-‐‑intensive Systems"ʺ

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-‐‑management-‐‑
Kreislauf"ʺ

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"ʺ

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ‚Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-‐‑America: An Analysis of
Model Curricula”

No 16 (May 2007)
Müller-‐‑Clostermann, Bruno; Tilev, Milen: “Using G/G/m-‐‑Models for Multi-‐‑Server and Mainframe Ca-‐‑
pacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-‐‑Professionals – Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft-‐‑
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des
IT-‐‑Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen-‐‑
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model -‐‑ Ein Vorschlag für ein Forschungspro-‐‑
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-‐‑
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

Previously published ICB -‐‑ Research Reports

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part III – Results
Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys-‐‑
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -‐‑methoden in
Wirtschaftsinformatik und Information Systems“

�

�������������������

���
���������������������������
���������������������

Richard Berntsson Svensson, Daniel Berry, Maya Daneva, Jörg
Dörr, Samuel A. Fricker, Andrea Herrmann, Georg Herzwurm,
Marjo Kauppinen, Nazim H. Madhavji, Martin Mahaux, Barbara
Paech, Birgit Penzenstadler, Wolfram Pietsch, Camille Salinesi,
Kurt Schneider, Norbert Seyff, Inge van de Weerd (Eds.)

Proceedings of the Workshops RE4SuSy,
REEW, CreaRE, RePriCo, IWSPM and
the Conference Related Empirical Study,
Empirical Fair and Doctoral Symposium

ICB-Research Report No. 52

July 2012

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de
ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

5218th International Working Conference on
Requirements Engineering: Foundation for
Software Quality

